Loading...
机构名称:
¥ 1.0

摘要 量子计算的最新进展使其成为解决复杂计算挑战的潜在解决方案,而监督学习正成为一个特别有前途的应用领域。尽管具有这种潜力,量子机器学习领域仍处于早期阶段,人们对于其可能在短期内出现的量子优势仍然存在一定程度的怀疑。本文旨在从经典的角度审视当前的监督学习量子算法,有效地将传统的机器学习原理与量子机器学习的进步结合起来。具体而言,本研究绘制了一条与量子机器学习文献主要关注点不同的研究轨迹,它源于经典方法的先决条件,并阐明了量子方法的潜在影响。通过这次探索,我们的目标是加深对经典方法和量子方法之间融合的理解,从而为未来两个领域的发展奠定基础,并促进经典方法从业者参与量子机器学习领域。

量子监督学习

量子监督学习PDF文件第1页

量子监督学习PDF文件第2页

量子监督学习PDF文件第3页

量子监督学习PDF文件第4页

量子监督学习PDF文件第5页