该过程的计算成本可能很高,特别是对于高维问题以及需要非结构化网格时,例如为了解释局部不规则行为。然后可以使用各种数值方法(例如有限元 (FEM)、有限差分 (FDM) 或有限体积 (FVM))求解该离散方案。但即使是这些方法对于大型复杂问题也可能效率低下。例如,描述流体运动的 Navier-Stokes 方程的解可能需要超级计算机上数百万小时的 CPU 或 GPU 时间。另一个例子是泊松方程,它是工程学中最重要的偏微分方程之一,包括热传导、引力和电动力学。在高维环境中对其进行数值求解只能使用迭代方法,但迭代方法通常不能很好地随着维度而扩展和/或在处理边界条件或生成离散化网格时需要专业知识。神经网络 (NN) 非常适合解决此类复杂 PDE,并且已在工程和应用数学的各个领域用于复杂回归和图像到图像的转换任务。科学计算界早在 20 世纪 80 年代就已将其应用于 PDE 求解 [ 20 ],但近年来人们对它的兴趣呈爆炸式增长,部分原因是计算技术的显著进步以及此类网络公式的改进,例如在 [ 4 , 21 , 32 ] 中详细介绍和强调过。量子计算是一种变革性的新范式,它利用了微观物理尺度上的量子现象。虽然设计难度显著增加,但量子计算机可以运行专门的算法,这些算法的扩展性比传统计算机更好,有时甚至呈指数级增长。量子计算机由量子位组成,与传统数字计算机中的位不同,量子位基于量子物理的两个关键原理存储和处理数据:量子叠加和量子纠缠。它们通常会出现特定的误差,即量子误差,这些误差与其量子比特的量子性质有关。即使目前还没有足够复杂度的量子计算机,我们也显然需要了解我们希望在其上执行哪些任务,并设计方法来减轻量子误差的影响 [ 29 ]。量子神经网络形成了一类新的机器学习网络,利用叠加和纠缠等量子力学原理,有可能处理复杂问题和 / 或高维空间。量子神经网络的建议架构包括 [ 7 , 11 , 34 ],并表明它可能具有潜在的优势,包括更快的训练速度。对量子机器学习的初步理论研究表明,量子网络可以产生更易于训练的模型 [ 1 ]。这与使用机器学习解决 PDE 问题尤其相关,因为产生更有利损失景观的技术可以大大提高这些模型的性能 [13,18]。在目前的研究中,我们提出了一种制定量子神经网络的新方法,将一些经典的机器学习技术转化为量子设置,并在特定的 PDE(Heat、Poisson 和 HJB 方程)背景下开发复杂性分析。这提供了一个框架来展示量子神经网络作为 PDE 求解器的潜力和多功能性。本文结构如下:第 2 部分介绍 PINN 算法,并回顾经典和量子网络的基础知识。在第 3 部分中,我们介绍了一种新颖的
主要关键词