Loading...
机构名称:
¥ 1.0

简介。算符本征态之间的转换概率在量子力学中起着核心作用。假设驱动系统在时间 t 1 处于给定本征态 | j 1 ⟩ ,则系统在稍后时间 t 2 处于本征态 | j 2 ⟩ 的概率为 P j 1 ,j 2 = |⟨ j 2 | U ( t 2 − t 1 ) | j 1 ⟩| 2 ,时间演化算符为 U ( t 2 − t 1 ) [1]。则测量相应本征值 j 1 和 j 2 的概率为 P j 1 ,j 2 P j 1 ,其中 P j 1 是初态的占据概率。这种联合概率通常通过投影测量确定 [1]。然而,本征态的相干叠加可能对动力学产生深远影响,在量子理论中无处不在 [2]。由于射影测量会破坏线性组合,因此开发非射影方法来测量(多个)任意状态之间的联合概率至关重要。在这方面,动态贝叶斯网络提供了一种强大的形式化方法,可以分析一组与时间相关的随机量的条件依赖关系。在这种方法中,动态变量之间的关系通过经贝叶斯规则评估的条件概率来指定 [3–6]。它们在统计学、工程学和计算机科学中得到了广泛的应用,用于在概率模型中对时间序列进行建模。具体的应用包括预测未来事件、推断隐藏的

从量子系统的多个副本中提取贝叶斯网络

从量子系统的多个副本中提取贝叶斯网络PDF文件第1页

从量子系统的多个副本中提取贝叶斯网络PDF文件第2页

从量子系统的多个副本中提取贝叶斯网络PDF文件第3页

从量子系统的多个副本中提取贝叶斯网络PDF文件第4页

从量子系统的多个副本中提取贝叶斯网络PDF文件第5页

相关文件推荐