讲座和实验室 (4 个学分) 教师 Delon Washo-Krupps 博士 办公室:亚利桑那州坦佩 电话:(480) 965-4501 电子邮件地址:Delon.Washo@asu.edu 办公时间:通过电子邮件安排 目录描述 生物学 201 是研究人体结构和功能的学科。主题包括:表面解剖学、化学、细胞、遗传学、组织学、皮肤系统、骨骼系统、关节、肌肉系统、中枢/外周/自主神经系统和感觉器官。 课程概述 BIO 201 是两部分系列课程中的第一门。BIO 201 回顾基础生物学和化学,然后介绍一些主要的身体系统:皮肤、骨骼、肌肉和神经。该课程由讲座和实验室组成。请注意,某些 BIO 201 课程内容可能被视为敏感内容 - 包括但不限于人体图形图像。 学习成果 完成本课程后,学生将能够: 应用科学方法 描述和应用解剖术语 描述碳水化合物、脂质、蛋白质和核酸的组成和组织,并解释每种物质的生物学作用。 描述细胞器的结构和功能 概述物质穿过质膜的运动。 区分和描述主要组织类型的组织学、位置和功能。 描述外皮系统的结构和功能。 描述骨骼系统的结构和功能。 描述肌肉系统的结构和功能。 描述神经系统的结构和功能。 描述感觉器官的结构和功能。 定义体内平衡并解释皮肤、骨骼、肌肉和神经系统的具体例子。
自从发现 FLG 功能丧失变异与寻常型鱼鳞病和特应性皮炎发病之间的关联以来,FLG 的功能一直在研究中。个体内基因组易感性、免疫混杂因素和环境相互作用使 FLG 基因型与相关因果关系之间的比较变得复杂。使用 CRISPR/Cas9,我们生成了人类 FLG 敲除 (D FLG) N/TERT-2G 角质形成细胞。通过对人类表皮等效培养物的免疫组织化学分析显示 FLG 缺乏。除了结构蛋白(外皮蛋白、角蛋白、角蛋白 2 和转谷氨酰胺酶 1)的(部分)损失外,角质层更致密,缺乏典型的篮状编织外观。此外,电阻抗光谱和经表皮失水分析强调了 D FLG 人类表皮等效物的表皮屏障受损。校正 FLG 可恢复颗粒层中角蛋白透明颗粒的存在、FLG 蛋白表达以及前面提到的蛋白质的表达。电阻抗光谱和经表皮失水的正常化反映了对角质层形成的有益影响。这项研究显示了 FLG 缺乏的因果表型和功能后果,表明 FLG 不仅在表皮屏障功能中起着核心作用,而且通过协调其他重要表皮蛋白的表达对表皮分化至关重要。这些观察结果为研究 FLG 在皮肤生物学和疾病中的确切作用奠定了基础。
自身免疫性多发性疾病念珠菌性外皮皮肤病(Apeced)是一种罕见的威胁生命的自身免疫性疾病,可攻击多种器官,并在童年时期发作。这是由自身免疫调节剂(AIRE)基因中多种突变引起的遗传条件,该基因编码了一种蛋白质,其功能已被AIRE -KO小鼠的产生和研究所揭示。这些提供了对髓质胸腺上皮细胞(MTEC)中AIR表达之间联系的宝贵见解,这些细胞表达并具有发育中的胸膜细胞表达的自我抗原的广泛谱。与AIRE -KO小鼠不同,最近生成的AIRE -KO大鼠模型呈现了视觉特征,器官淋巴细胞浸润和自身抗体的产生,它们类似于在APECED患者中观察到的自身抗体,从而使大鼠模型成为主要的研究资产。此外,已经成功建立了原代MTEC中AIRE依赖性自我抗原表达的离体模型。基于apecception患者的多能干细胞衍生的TEC的胸腺类器官也正在出现,并且构成了工程aire校正的MTEC的有前途的工具,并恢复了调节性T细胞的产生。最终,这些新模型无疑将在识别和评估旨在恢复Apececcected患者的免疫学耐受性的特定新型治疗策略的识别和评估方面取得主要进步。
专业信息Avastin®25mg/ml浓缩物用于生产定性和定量组成:每个毫升浓缩物均包含25 mg贝伐单抗*。每个渗透到4 mL含有100 mg贝伐单抗。每次穿透至16 mL含有400 mg贝伐单抗。有关稀释和其他有关处理的信息,请参见专家信息的第6.6节。*bevacizumab是一种重组人源化的单克隆抗体,使用脱氧核糖核酸(DNA)技术(DNA)从中国仓鼠(CHO-CELLS)的卵巢细胞中获得。其他成分列表:trahalose二氢酸盐(Ph.Eur。),磷酸钠,多氧化盐20,用于注射目的的水:贝伐单抗与氟吡啶碱基上的化学疗法结合使用,以治疗成人转移性结肠或直肠癌患者。bevacizumab与紫杉醇结合使用,用于对转移性乳腺癌患者的第一线治疗。有关更多信息以及人类表皮生长因子受体2(HER2)状态,请参见专家信息的第5.1节。bevacizumab用于转移性乳腺癌的成年患者的第一线治疗,其中使用其他化学疗法的治疗(包括紫杉群或蒽环类药物)被认为不合适。有关更多信息以及HER2状态,请参见专家信息的第5.1节。物质。在辅助治疗框架内接受紫杉林和含蒽环类治疗方案的患者不应与卡皮替汀结合使用阿瓦斯汀进行治疗。bevacizumab除了含铂的化学疗法外,还使用了无法手术的晚期,转移或复发性非小细胞肺癌的一线治疗,除了上述上述的鳞状上皮组织学。bevacizumab与厄洛替尼结合使用,用于对无法手术的晚期,转移或经常性的非小细胞细胞 - 细胞非SQUAT深度深度癌的第一线治疗,并激活表皮生长因子受体(EGFR)的突变(请参阅第5.1节(请参阅5.1)专家信息)。bevacizumab用于患有晚期和/或转移性肾细胞癌的成年患者的第一线治疗。bevacizumab与卡泊粉蛋白和紫杉醇结合使用,用于针对晚期上皮卵巢癌,输卵管癌或原发性腹膜癌的成年患者的一级治疗。专家信息)。已经在VEGF受体上收到了物质(请参阅专家信息的第5.1节)。bevacizumab与卡泊粉蛋白和吉西他蛋白结合使用,或与卡泊粉蛋白和紫杉醇结合使用,用于治疗成年患者的初始铂 - 敏感性复发性上皮卵巢癌的敏感性复发,以前与以前曾经使用过的是腹膜癌或原来的腹膜癌症VEGF抑制剂或bevacizumab与紫杉醇,拓扑替康或乳状脂质体阿霉素结合使用,用于治疗成年患者的铂抗性卵巢癌的抗性耐药性复发,外皮癌的外皮癌或原发性治疗,以前用治疗疗法治疗,并以前曾经用过两种化学治疗。贝伐单抗或其他VEGF抑制剂或
小麦收获前发芽(PHS)会降低产量和籽粒质量,几乎在世界各地的小麦种植区都会发生(Vetch 等,2019)。一般而言,红粒小麦品种比白粒小麦品种对 PHS 的耐受性更强(Himi 等,2011)。此外,籽粒外皮的红色色素中含有原花青素,其抗氧化活性和自由基清除能力具有促进健康的功效。因此,培育优良红粒小麦品种是培育高产优质小麦的重要目标。R2R3-MYB 是植物中最大的转录因子家族之一,在调节植物发育、代谢和逆境反应中起着至关重要的作用。六倍体小麦的 R2R3-MYB 转录因子 Tamyb10 可激活黄酮类化合物生物合成基因,从而决定小麦粒的红色,并影响 PHS(Himi et al.,2011)。在大多数白小麦品种中,Tamyb10-A1a、Tamyb10-B1a 和 Tamyb10-D1a 基因存在大面积插入或缺失,从而破坏了 IRTKAL/IRC 基序和调控功能(Himi et al.,2011)。在 Tamyb10 基因中,Tamyb10-B1a 等位基因在近 88.6% 的面包小麦品系中发生 19 bp 的缺失;该缺失导致开放阅读框移码,并破坏了所产生的蛋白质(Dong et al.,2015;Himi et al.,2011)。鉴于 CRISPR/Cas9 诱导的突变通常在特定靶位点处为 +1/1 bp 插入/缺失 (Zhang et al., 2014 , 2016 ),我们可以恢复 Tamyb10-B1a 等位基因内的移码突变(由 19 bp
1 奶牛、肉牛和小牛犊的状况评分 1 2 奶牛和肉牛犊休息时行为的可靠性测试 7 3 奶牛、肉牛和小牛犊的清洁度评分 25 4 牛的胴体损伤、到货时死亡和屠宰时降级 31 5 奶牛、肉牛和小牛犊的跛行 35 6 牛的评分:奶牛、肉牛和小牛犊的外皮变化 43 7 牛的最终 pH 值和瘀伤评估 51 8 奶牛和肉牛的伤害和异常行为测量的可靠性 57 9 屠宰时的恐惧和伤害行为评估 71 10 牛的健康状况 77 11 牛的致晕质量评估 89 12 奶牛和肉牛的激动行为测量的可靠性 95 13 社交舔舐作为积极情绪指标的验证 113 14 农场小牛异常行为观察的可靠性 125 15 大群饲养的小牛人与动物关系的测量 131 16 奶牛人与动物关系的评估 137 17 育肥公牛人与动物关系的评估 153 18 肉牛探索行为作为积极情绪指标的验证 163 19 奶牛和肉牛社会积极行为和游戏行为测量的可靠性 175 20 行为测量的可靠性 186 189 犊牛的社会积极行为和玩耍行为 21 大型饲养的犊牛的一般恐惧性评估 195 22 奶牛和育肥公牛的一般恐惧性评估 201 23 定性行为评估 215
•基于常染色体遗传模式描述了两种主要类型的DEB类型:隐性DEB(RDEB)和主导DEB(DDEB);这些进一步分为多个亚型。所有DEB亚型均由7型胶原基因(COL7A1)中的突变引起,该突变代码为7型胶原蛋白(COL7)的α-1链。突变导致功能性COL7不存在或减少,这是真皮和表皮之间地下膜区锚定原纤维(AF)的主要成分。不存在或降低的AF功能会导致表皮 - dermal分离,响应次要皮肤创伤,从而导致皮肤机械脆弱性和复发性的泡沫形成,并可能发生在所有上皮曲折或衬里结构上。•RDEB由于慢性和反复发泡以及随后在皮肤表面和粘膜膜上的疤痕而引起的显着发病率相关,这显着对日常工作产生了负面影响。RDEB患者的死亡率在10岁时接近10%,到20岁,近40%,到30岁时72%。死亡率通常是侵袭性鳞状细胞癌(SCC),败血症或营养不良的结果(由于口腔/食管的参与,由于无法/不愿食用)。3像RDEB一样,DDEB可能与出生时起泡或此后不久有关。在许多受DDEB影响的患者中,某些AF在功能上完好无损,导致表型或临床表现比RDEB中通常观察到的较轻。由于持续的和反复的起泡以及随后在皮肤表面上的疤痕,对这些患者的发病率可能很大。•RDEB或DDEB没有治疗方法。对皮肤和粘膜DEB病变的最佳支持治疗包括保护性疗法和敷料以及伤口的治疗,包括最近经过批准的局部细胞基因疗法以及相关的并发症(例如,局部感染)。•D-FI(FCX-007; Castle Creek Biosciences)是一种外皮内施用的产物,由从患者自己的皮肤活检中分离出的自体成纤维细胞组成,然后用溶管载体转导,含有全长的COL7A1基因产生功能性COL7。基于受影响的患者的功能性COL7的一定缺乏,正在研究DEB患者的伤口的安全性和功效。
背景:在所有癌症中,肺癌的死亡率最高,免疫疗法经常会导致耐药性。了解肺癌患者免疫逃生背后的分子机制并开发了预测性和治疗靶标,我们使用单细胞测序进行了分析实验。方法:我们从八名肺腺癌患者中收集了八个肿瘤组织样品,并根据程序性细胞死亡配体1(PD-L1)表达水平的阳性反应对它们进行了分类。单细胞测序分析用于创建全面的细胞景观。均匀的歧管近似和投影用于显示免疫和内皮细胞的比例,以及描述不同细胞类型的分布的地图。细胞细分;根据PD-L1水平和肿瘤标记阳性反应对亚群体进行分组。探索了PD-L1反应的发生与免疫细胞的反应时间之间的相关性;两组之间的差异基因表达被阐明。最后,使用定量聚合酶链反应(QPCR)检查关键表达的基因与PD-L1免疫逃逸检查点响应之间的关系。结果:总共分析了58,810个单细胞,确定了七种不同的细胞类型。在PD-L1阳性样品组中,B细胞,星形胶质细胞,内皮细胞,外皮细胞和组织干细胞的比例较高,而T和Dendritic细胞是PD-L1阴性样品组中的主要细胞。根据分子标记,将七种细胞类型分为17个细胞簇,一个簇归类为肿瘤细胞,显示PD-L1阳性。同时筛选具有不同表达水平的11个分子标记物(NAPSA,MUC1,WFDC2,MyO6,Lyz,IgHG4,IglG4,Igll5,IglM5,IGHM,IGKC,AQP3和IGFBP7),以及与PD-L1/PD-L1/PD-1/PD-1/PD-1/PD-1/PD-1/PD-1/PD-1/PD-1/PD-1/PD-1/PD-1/PD-1免疫响应的关联。结论:我们的研究表明,PD-L1介导的免疫逃逸可能发生在肿瘤进展的后期,涉及PD-L1阳性和阴性免疫细胞。此外,我们确定了11种差异表达的基因,可以提供有关肺癌患者免疫逃生的潜在机制的见解。这些发现提供了有希望的分子靶标,用于检测和治疗临床环境中的免疫逃逸。
一、昆虫形态学 昆虫体壁结构、构造和形态;口器、触角及其类型和功能;翅膀:构造和形态、脉络、翅膀连接装置和飞行机制;足:构造和形态。 胚胎后发育。昆虫目中未成熟阶段的类型,卵、若虫/幼虫和蛹的形态,未成熟阶段对于害虫管理的意义。 二、昆虫解剖学和生理学 外皮生理学、蜕皮、角质层化学、几丁质的生物合成;生长、激素控制、变态和休眠期;信息素的分泌、传递、感知和接收。昆虫消化、循环、呼吸、排泄、繁殖、分泌(外分泌腺和内分泌腺)和神经冲动传递的生理学和机制。昆虫营养的重要性——维生素、蛋白质、氨基酸、碳水化合物、脂质、矿物质和其他食物成分的作用;细胞外和细胞内微生物及其在生理学中的作用;人工饲料。III. 昆虫分类学 昆虫目和其中所含的具有经济价值的科的区别性状、一般生物学、习性和栖息地。弹尾目、原尾目、双尾目。昆虫纲:无翅亚纲——古颌目、缨尾目。亚纲:有翅亚纲,古翅目——蜻蜓目和蜉蝣目。门:新翅目:亚门:直翅目和蜉蝣目(=小翅目:蜉蝣目、蜉蝣目、等翅目、螳螂目、蝼蛄目、革翅目、直翅目、竹节虫目、螳螂目、茧蜂目、蟠翅目),亚门:半翅目(=副翅目):伪翅目、虱目、缨翅目和半翅目。昆虫目及其所含重要经济科的鉴别特征、一般生物学、习性和栖息地(续)。新翅目亚门,脉翅目组-鞘翅目:捻翅目、大翅目、尖翅目、脉翅目和鞘翅目,全翅目组长翅目、蚤目、双翅目、毛翅目、鳞翅目,膜翅目组:膜翅目。IV. 昆虫生态学丰度的基本概念-模型与现实世界。种群增长基本模型-指数与逻辑模型。离散与连续增长模型。概念
海洋复合材料结构检测技术 Eric Greene ( Eric Greene & Associates ) 越来越多的海洋结构正在使用复合材料。使用复合材料可以制造更轻、更耐腐蚀的主要结构和部件。美国海军的 DDG-1000 上部结构和 LPD-17 先进封闭桅杆正在用复合材料建造。此外,海上石油工业开始建造复合材料立管和居住模块。为复合材料航空航天结构开发的无损评估 (NDE) 技术不适用于大型海洋结构。本文概述了该研究。海洋复合材料结构的早期特点是采用固体层压板,按照今天的标准,这些层压板被认为是“过度建造”,以弥补我们缺乏经验数据。对更轻、更高效结构的需求导致了采用非常轻质芯材的夹层结构的发展。这些层压板具有更广泛的故障模式,包括:芯材损坏、外皮与芯材分离和进水。当今的复合材料船舶也以更高的速度运行,这会大大增加结构载荷。我们也有更多的建造者建造更大的复合材料结构,使用更多的材料类型和制造工艺组合。因此,我们已经从海事测量员可以依靠视觉检测分层或损坏的内部框架的时代转变为需要复杂的 NDE 工具来查找通常隐藏的损坏的时代。建造者还需要更复杂的方法来支持质量保证计划。幸运的是,信号和图像处理技术的进步使我们能够利用具有成本效益的 NDE 技术来利用整个电磁频谱。由于平台成本非常高,且任何结构故障都至关重要,航空航天业一直是复合材料结构 NDE 技术发展的推动力。但是,飞机所需的检查区域比船舶小得多,而且结构通常更加统一。这意味着船舶的 NDE 必须比为航空航天业开发的系统更便宜、更快速,并且涵盖更广泛的材料和结构布置。由于更加重视燃油经济性以降低运营成本和环境恶化,所有运输系统都在研究更多地使用轻质复合材料结构。作者简介 Eric Greene 获得了理学学士学位。先进的无损检测系统将确保这些平台安全运行,并有助于促进国内轻型船舶和船舶系统制造相关的经济发展。1979 年获得麻省理工学院船舶与海洋工程学士学位。他于 1987 年创立了 Eric Greene Associates, Inc.,专注于海洋复合材料。Greene 先生曾担任多项复合材料相关的美国海军技术插入工作的项目经理,包括 DDG-51 舵。他曾担任五个船舶结构委员会项目的首席研究员。