根据形态和来源,纳米级纤维素(即纳米纤维素)可分为三类,包括纤维素纳米晶体(CNC)、纤维素纳米纤维(CNF)和细菌纳米纤维素(BNC)。前两类来自植物(Yadav et al., 2021),而细菌纳米纤维素来自微生物(Ullah et al., 2017)。此外,纳米纤维素还可从藻类(Ruan et al., 2018)和动物(Bacakova et al., 2019)中获得,也可以通过无细胞酶系统合成(Kim et al., 2019)。目前,纳米纤维素的研究主要从三个方面进行:生产、品质提升和功能化,以用于各种生物技术应用。例如,植物纤维素含有木质素、半纤维素和矿物质,应将其去除以获得高纯度和质量的纳米纤维素(Ul-Islam 等,2019a)。为此,人们已开展努力来开发绿色方法,以尽量减少或避免使用木质纤维素材料水解所需的有毒化学品。另一方面,细菌生产 BNC 的产量和生产率低,生产成本高。因此,已采用菌株改良、共培养、开发工程菌株和先进反应器等多种策略来提高 BNC 的产量和生产率(Islam 等,2017;Sajadi 等,2019;Moradi 等,2021)。同时,不同的农业工业废弃物已被用作细菌生产BNC的碳源(Velásquez-Riaño和Bojacá,2017年;Ul-Islam等,2020年;Zhou等,2021年)。同样,虽然不同类型的纳米纤维素具有令人印象深刻的形态和物理化学特性并且无毒,但它们不具备材料的一些理想特性,如粘合位点、抗菌和抗氧化活性、电磁特性和催化活性,因此需要进一步改性(Picheth等,2017年;Vilela等,2019年)。由于相似的表面化学性质,所有类型的纳米纤维素都通过相同的化学策略进行改性,如酯化(Spinella 等人,2016 年)、醚化(De La Motte 等人,2011 年)、酰胺化(Kim 等人,2015 年)和氧化(Khattak 等人,2021 年),以及通过氢键、静电相互作用、亲水/疏水相互作用和 π - π 堆积进行物理改性,其中纤维素的游离 OH 基团直接与富电子的胺基、氧原子和羧基相互作用并形成氢键(Ullah 等人,2019 年)。由于不同类型的纳米纤维素具有独特的表面化学性质、多样性和令人印象深刻的特性,它们可应用于生物医学(Wang 等人,2021 年)、环境(Shoukat 等人,2019 年)、纺织(Felgueiras 等人,2021 年)、制药(Raghav 等人,2021 年)、能源(Zhang 等人,2020 年)、增材制造(Fourmann 等人,2021 年)、化妆品(Bianchet 等人,
由于眼球运动发出的电信号与传感器距离很近,且出现频率很高,因此会在脑电图信号上产生非常强烈的伪影。在检测脑电图波形中的眨眼伪影以进一步去除和净化信号方面,文献中提出了多种策略。最常用的方法需要使用大量电极、复杂的设备来采样和处理数据。这项工作的目标是创建一种可靠且独立于用户的算法,用于使用 CNN(卷积神经网络)检测和去除脑电图信号中的眨眼。为了进行训练和验证,使用了三组公共脑电图数据。这三组数据都包含在招募的受试者执行指定任务时获得的样本,这些任务包括在特定时刻自愿眨眼、观看视频和阅读文章。本研究中使用的模型能够全面理解所有将普通脑电图信号与受眨眼伪影污染的信号区分开来的特征,而不会被仅在信号被记录的情况下出现的特定特征过度拟合。
多用途胶囊 (MAC) 是一种独立的过滤器组件,旨在满足数字喷墨打印机日益增长的需求。这种独特的胶囊将在喷墨应用中提供高水平的打印头保护和长使用寿命。标准和抗紫外线 MAC 过滤器组件在过滤介质和连接器选项方面都具有灵活性,可以轻松定制产品。
为各种任务设计的多用途应用程序,可用于水平,倾斜和垂直激光应用。可以在X或Y轴上使用±5%(使用倾斜板的±15%)。将其转向其一侧,并将其用于布局和对齐作业。
首字母缩略词和缩写 Σ 总和 µg 微克 AVS 酸性挥发性硫化物 BHC 六氯苯 BMP 最佳管理实践 BOD 生化需氧量 CAM 加州评估手册 COC 监管链 COD 化学需氧量 COP 加州海洋计划 CTR 加州有毒物质规则 DDD 二氯二苯二氯乙烷 DDE 二氯二苯二氯乙烯 DDT 二氯二苯三氯乙烷 DO 溶解氧 DOC 溶解有机碳 ID 标识 IDW 反距离加权 LARWQCB 洛杉矶区域水控制委员会 MDL 方法检测限 MdRH 马里纳德尔雷港 MPN 最可能数 NDMA N-亚硝基二甲胺 NDPA N-亚硝基二正丙胺 NTU 散射浊度单位 PAH 多环芳烃 PCB 多氯联苯 PCE 四氯乙烯 pH 氢离子浓度 Q-PCR 定量聚合酶链反应 QA 质量保证 QC 质量控制 SAP 采样和分析计划 SEM 同时萃取金属 SM 标准方法 STLC 可溶性阈值极限浓度 SVOC 半挥发性有机碳 SWRCB 州水资源控制委员会 TCLP 毒性特性 浸出程序 TDS 总溶解固体 TKN 总凯氏氮 TMDL 总最大日负荷 TOC 总有机碳 TPH 总石油烃 TSS 总悬浮固体 TTLC 总阈值极限浓度 USEPA 美国环境保护署 VOC 挥发性有机碳 WET 废物提取测试 WQO 水质目标
目标模型确定了属于两种不同脆弱性类别的 MPCA 受益人。使用 2022 年的 SMEB 值和转移值的平均值作为阈值 2 并转换为人均消费,预计消费低于每人每月 70.000 伊拉克第纳尔的人被视为灾难脆弱人群。这些人可能面临保护风险,并且在获得生计机会方面面临严重困难。预计属于这一类别的人最适合转介保护服务。但是,必须注意的是,属于其他类别的人也可能面临严峻的状况。
农业部门正在经历一场向可持续发展的转型,其驱动力是减少对化石燃料的依赖,并将环境影响降至最低。本研究介绍了一种*多用途太阳能农业机器*的设计、开发和评估,该机器能够执行基本的农业任务,例如耕作、播种、土壤准备和灌溉或施肥。该机器集成了 21V 太阳能电池板、24V 2.5Ah 电池存储系统和模块化连接机制,可实现功能之间的无缝切换。该系统专为小规模农民设计,强调成本效益、能源效率和环境可持续性。实地测试表明,该机器每天可高效运行 5-6 小时,太阳能转换率为 18%。耕作模块实现了每小时 0.1 英亩的覆盖率,而播种机制保持了 95% 的准确率。灌溉泵每小时输送 130 升水,满足了典型农业作业的需求。该项目凸显了太阳能多用途机械革新可持续农业的潜力,为降低运营成本和碳足迹提供了切实可行的解决方案。未来的工作将侧重于优化能源存储和扩大模块化附件的范围,以进一步提高多功能性和采用率。
1936 年,英国皇家空军军官 JC Slessor 出版了《空中力量与军队》一书,称空中力量是当时战争中最具革命性的进步。1 这项新技术的出现和在水面以上作战的能力永远重新定义了当代战争概念。2016 年,托马斯·弗里德曼的《谢谢你的迟到》解释说,技术以指数级的速度发展,这被称为摩尔定律。2 历史上第一次,人类的适应能力无法跟上技术进步的步伐。3 一年后,兰德公司报告称,“在合理的假设下,美军可能会输掉下一场战争。” 4 最后,在 2019 年,退役将军戴维·彼得雷乌斯表示,美国已进入“技术冷战的早期阶段”。 5 这四个看似独立的点,却决定了美国今天所处的关键位置。技术进步正在改变空中力量的使用,能够将新技术与组织改革和创新作战理念融合在一起的国家将主宰未来以信息为中心的战场,并可能开启下一次军事革命 (RMA)。
NAWCTSD 团队由 David Thomas、Darrell Conley、Bill Zeller、Khoa Vu 和 Christopher Freet 组成。 Thomas 先生是所有 MRTS 项目的首席项目经理。Conley 先生是 MRTS 3D VIRGINIA 鱼雷室和 MRTS 3D VIRGINIA EDG 的项目经理。Zeller 先生是 MRTS 3D VIRGINIA 鱼雷室的首席系统工程师,Vu 先生是 MRTS 3D VIRGINIA EDG 的首席系统工程师,Freet 先生是这两个项目的首席软件工程师。
过去几十年来,世界各地的土地使用和码头运营都出现了高度专业化。这一发展受到集装箱贸易增长和散货、天然气和石油码头优化的影响。多用途码头主要只处理散装货物、干货或货物混合的船舶装载,而这些码头仍然是港口行业的重要支柱。然而,最近的贸易数据表明,集装箱化增长的趋势似乎正在放缓甚至停止。集装箱运输流量的市场似乎已经饱和。集装箱处理成本的进一步降低和效率的提高只能在边际水平上实现。多用途码头的优化潜力要大得多。