引言。目前,人们对拓扑非平凡系统中的凝聚态物理学有着浓厚的兴趣。在过去的二十年里,人们做出了巨大的努力来寻找新型拓扑量子物质,如拓扑绝缘体[1,2]、拓扑半金属[3]或拓扑超导体[4]。拓扑相通常与两个能带相交的能带结构中的孤立奇点有关[5,6]。在拓扑超导体的情况下,零能量的Bogoliubov准粒子(称为Majorana零模式)可用于拓扑保护的量子计算[4]。此类系统中零能量模式的存在受到拓扑保护[7],最近已在超导三端结实验中得到证实[8]。实际上,超导弱链接中的安德烈夫束缚态 (ABS)(也称为约瑟夫森结)也被提议用于实现量子比特 [9,10]。如果将结嵌入射频超导量子干涉装置 (SQUID),则可以轻松调整 ABS,并且可以通过微波 [11 – 14]、隧穿 [15] 和超电流谱 [16] 进行实验访问和相干操控。最近,据预测,由传统超导体制成的多端约瑟夫森结 (MJJ) 将表现出四 [17 – 22] 和三 [23 – 27] 引线的非平凡拓扑。在这样的系统中,不需要奇异的拓扑材料,尽管多端拓扑纳米线也已被讨论过 [27]。在 MJJ 中,两个终端之间的量化跨导是整数值陈数的表现形式 [17,20,21,27]。或者,弗洛凯在周期驱动的约瑟夫森系统中陈述,其连通性比
摘要:忆阻器件由于结构简单、集成度高、功耗低、运行速度快等特点,在存储器、逻辑、神经网络和传感应用中备受关注。特别是,由有源门控制的多端结构能够并行处理和操纵信息,这无疑将为神经形态系统提供新概念。通过这种方式,可以设计基于晶体管的突触器件,其中突触后膜中的突触权重被编码在源漏通道中,并由突触前终端(门)修改。在这项工作中,我们展示了强关联金属氧化物中可逆场诱导金属-绝缘体转变 (MIT) 的潜力,可用于设计坚固而灵活的多端忆阻晶体管类器件。我们研究了在 YBa 2 Cu 3 O 7 − δ 薄膜上图案化的不同结构,这些结构能够显示栅极可调的非挥发性体积 MIT,由系统内的场诱导氧扩散驱动。这些材料的关键优势是不仅可以在受限的细丝或界面中均匀调整氧扩散,就像在广泛探索的二元和复合氧化物中观察到的那样,而且可以在整个材料体积中均匀调整。与基于导电细丝的器件相比,关联氧化物的另一个重要优势是显著减少了循环间和器件间的差异。在这项工作中,我们展示了几种器件配置,其中漏极-源极通道(突触权重)之间的横向传导由主动栅极可调体积电阻变化有效控制,从而为设计稳健且灵活的基于晶体管的人工突触提供了基础。
Flex设备运行基于Red Hat Linux的Veritas优化操作系统(VXOS)以及专有的集装箱软件,该软件允许按需提供数据保护服务。这种方法允许将多个NBU和NBU云催化剂部署整合到单个超融合基础架构上以进行多端。有效地,数据保护服务可以根据特定的应用程序,站点或部门的要求逐案提供 - 无需特定的设备需要部署每个应用程序,站点或部门。因此,基础架构越来越降低,并简化了可伸缩性。Veritas的文件系统,卷管理器和群集服务器软件提供文件系统,卷管理和群集支持。NBU目录提供了元数据。
Keithley 提供广泛的测试功能,包括脉冲、DC 和 C-V。我们的 ACS Basic 软件使用设备专用(而非仪器专用)词汇来简化测量。它还简化了多个源测量单元 (SMU) 仪器之间的交互,因此用户可以专注于设备而不是仪器。IVy Android 应用程序与 2600B 系列 SourceMeter ® SMU 仪器配合使用,可执行 I-V 特性分析,包括双端和三端设备测试和趋势监控,并支持交互式分析和洞察您的设备,无需编程!或者,使用型号 2450 交互式 SourceMeter SMU 仪器和 KickStart I-V 特性分析软件对各种材料、双端和多端半导体设备、太阳能电池、嵌入式系统等执行电流与电压 (I-V) 测试。
我们推导出线性光学网络使用任意非经典但无纠缠的输入状态估计独立相移的线性组合的能力的界限,从而阐明了使用多端口干涉仪获得海森堡极限所需的量子资源。我们的界限表明,虽然线性网络可以生成高度纠缠的状态,但它们无法有效地将分布在多个模式中的量子资源组合起来用于计量目的:从这个意义上讲,具有分布良好的量子资源的线性网络表现为经典行为。相反,我们的界限表明,当输入光子集中在少数输入模式中时,线性网络可以实现分布式计量的海森堡极限,并且我们提出了一个明确的方案来实现这一点。
涉及多级纠缠的量子网络允许在量子通信,量子传感和分布式量子计算中进行令人兴奋的应用。通过光通道非本地纠缠产生的效率随着网络节点之间的距离而呈指数下降。我们提出了一种平行且预示的协议,用于在多个节点上生成分布式多Qualbit纠缠。这是通过使用高维单光子来实现的,该光子用作连接所有固定量子位(即硅胶合电子旋转)的普通数据总线,每个量子都与单面光腔耦合。平行的多等级纠缠状态与单个光子与每个固定值相互作用并通过每个光子调制电路的检测预示着它。此并行协议可以显着提高分布式纠缠生成的效率,并为分布式多端量子网络提供可行的途径。
多端器件的等效电路模型 [1] 已被用于探索 R H (量化霍尔电阻 (QHR))测量中的负载和接触电阻效应。主要观察结果是,由于强磁场中 QHR 器件 [2] 的接触(储层)和边缘状态之间的有效串联源电阻 r s = R H /2,从霍尔电压端子抽取的电流会导致显着的负载误差。1993 年,这些原理的计量应用通过在两个或多个器件之间设计具有多个链路的电路而建立 [3]。第一个链路承载大部分电流并在每个设备上设置等势边缘,因此霍尔电压互连具有小得多的负载电流。因此,在 QHARS 网络中,负载和直流接触电阻效应可以降低到可忽略不计的水平。同样,多重连接可最大限度地减少寄生负载对单个设备阻抗测量的影响,音频范围内 QHR 标准的开发也基于这一进步。
基于人工突触的受脑启发的神经形态计算硬件为执行计算任务提供了有效的解决方案。然而,已报道的人工突触中突触权重更新的非线性和不对称性阻碍了神经网络实现高精度。在此,这项工作开发了一种基于 α -In 2 Se 3 二维 (2D) 铁电半导体 (FES) 中的极化切换的突触记忆晶体管,用于神经形态计算。α -In 2 Se 3 记忆晶体管利用记忆晶体管配置和 FES 通道中电配置极化状态的优势,表现出出色的突触特性,包括近乎理想的线性度和对称性以及大量可编程电导状态。因此,α -In 2 Se 3 记忆晶体管型突触在模拟人工神经网络中的数字模式识别任务中达到了 97.76% 的高精度。这项工作为在先进的神经形态电子学中使用多端 FES 记忆晶体管开辟了新的机遇。
摘要:随着能源需求的不断增长以及人们对传统能源对环境影响的日益关注,可再生能源 (RES) 作为分布式发电单元融入电网的速度不断加快。与此同时,现代电动汽车 (EV) 正在展示出减少化石燃料消耗的良好能力。通过应用经过适当设计的多输入输出架构,可以解决与组合各种可再生能源以满足负载要求相关的问题。为了增加电动汽车的行驶里程,应将超级电容器和燃料电池等多种能源与电池存储系统连接并结合使用。为了管理具有各种电压-电流特性的这些能源,可以应用相同的概念。本研究确定并研究了多端口 DC-DC 转换器领域的当前趋势。本文对多端口转换器最重要的方面进行了回顾和分析,例如基于各种特性的类型、其拓扑结构、优点和缺点以及应用领域。本文对多端口转换器的设计指南和针对特定应用的选择过程进行了深入研究。根据多端口转换器的属性,本文对其进行了分类。与其他可用的评论出版物相比,本文更简洁,主要关注多端口技术最普遍和最重要的方面。根据所提供的信息,读者可以辨别多端口转换器发展的现代趋势和方向。
简介 1 1 至 3 参考规格 1 4 说明 2 5 至 11 绝缘套管和热缩管 4 12 至 14 焊接程序 5 15 至 26 压接触点 10 27 至 28 连接器接触点的手动压接工具 10 29 至 33 工具检查测量 11 34 至 35 接触定位装置的类型 22 36 至 39 压接程序 22 40 至 42 压接工具包 25 43 安装和拆卸压接触点 25 44 至 49 屏蔽连接 33 50 至 55 连通性测试 35 56 至 57 测试引线 36 58 电连接器的保护 36 59 至 61 灌封连接器 38 62 连接器附件40 63 至 72 引导修复程序 46 73 至 77 矩形连接器 48 78 至 79 MIL-DTL-83723 圆形连接器 48 80 至 84 MIL-DTL-5015 连接器 52 85 至 86 MIL-C-26482、MIL-C-26500 和 MIL-C-81703 连接器 57 87 至 88 MIL-C-81511 连接器 58 89 至 94 MIL-DTL-38999 连接器 65 95 至 97 M 和 MS 连接器电缆夹 70 98 MIL-C-81659 连接器 73 99 至 108 多端接连接器 87 109 至 111
