Loading...
机构名称:
¥ 1.0

摘要:忆阻器件由于结构简单、集成度高、功耗低、运行速度快等特点,在存储器、逻辑、神经网络和传感应用中备受关注。特别是,由有源门控制的多端结构能够并行处理和操纵信息,这无疑将为神经形态系统提供新概念。通过这种方式,可以设计基于晶体管的突触器件,其中突触后膜中的突触权重被编码在源漏通道中,并由突触前终端(门)修改。在这项工作中,我们展示了强关联金属氧化物中可逆场诱导金属-绝缘体转变 (MIT) 的潜力,可用于设计坚固而灵活的多端忆阻晶体管类器件。我们研究了在 YBa 2 Cu 3 O 7 − δ 薄膜上图案化的不同结构,这些结构能够显示栅极可调的非挥发性体积 MIT,由系统内的场诱导氧扩散驱动。这些材料的关键优势是不仅可以在受限的细丝或界面中均匀调整氧扩散,就像在广泛探索的二元和复合氧化物中观察到的那样,而且可以在整个材料体积中均匀调整。与基于导电细丝的器件相比,关联氧化物的另一个重要优势是显著减少了循环间和器件间的差异。在这项工作中,我们展示了几种器件配置,其中漏极-源极通道(突触权重)之间的横向传导由主动栅极可调体积电阻变化有效控制,从而为设计稳健且灵活的基于晶体管的人工突触提供了基础。

材料

材料PDF文件第1页

材料PDF文件第2页

材料PDF文件第3页

材料PDF文件第4页

材料PDF文件第5页

相关文件推荐

2021 年
¥3.0
2023 年
¥1.0
2022 年
¥1.0
2021 年
¥1.0
2025 年
¥1.0
2025 年
¥1.0
2025 年
¥1.0
2020 年
¥1.0
2020 年
¥2.0
2022 年
¥1.0
2019 年
¥2.0
2025 年
¥1.0
2025 年
¥3.0
2022 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2021 年
¥1.0
2025 年
¥1.0
2025 年
¥1.0
2024 年
¥1.0
2022 年
¥1.0
2013 年
¥1.0
2022 年
¥1.0
2021 年
¥1.0
2023 年
¥2.0
2022 年
¥1.0
2021 年
¥1.0