摘要:近年来,使用原代T细胞的免疫疗法在某些病理中彻底改变了医疗护理,但是与挑战性细胞基因组版,不足的细胞数量产生,仅使用自体细胞以及缺乏产品标准化有关的局限性限制了其临床使用。通过提供可自我更新的T细胞来源,可以从人类多能干细胞(HPSC)从人多能干细胞(HPSC)产生的T细胞提供巨大的优势,这些源可以很容易地在遗传上进行修饰并促进使用标准化通用的普遍存在的非现成的同种细胞产物和快速临床访问。尽管有潜力,但在进入临床环境之前,必须更好地理解与HPSC区分的T细胞的可行性和功能。在这项研究中,我们从T细胞(T-IPSC)产生了人类诱导的多能干细胞,从而保留已经重新组合的TCR,具有与人类胚胎干细胞(HESC)相同的特性。基于这些细胞,我们通过高效率,造血祖细胞(HPSC)分化了能够自我更新和分化为任何细胞血型的能力,除了DN3A胸腺祖细胞与几个T-IPSC线外。为了更好地理解分化,我们分析了不同细胞类型的转录组亲纤维,并证明与HIPSC分化的HPSC具有与脐带血造血干细胞(HSC)非常相似的pro纤维(HSC)。此外,分化的T细胞祖细胞在胸腺淋巴细胞的DN3A阶段具有类似的胸腺细胞。因此,利用这种方法,我们能够再生治疗性人类T细胞的前体,以便可能治疗多种疾病。
抽象注意力缺陷多动症(ADHD)是一种神经发育多基因疾病,影响了世界各地5%以上的儿童和青少年。遗传和环境因素在ADHD病因中起着重要作用,这导致了整个人群中广泛的临床结果和生物学表型。与同龄人的对照相比,患者通常发现了4年滞后的大脑成熟延迟。细胞生长率的可能差异可能反映了多动症患者的临床观察结果。但是,仍未阐明细胞机制。为了检验这一假设,我们分析了诱导多能干细胞(IPSC)和神经干细胞(NSC)的增殖,这些细胞(NSC)源自男性儿童和诊断为ADHD的男孩和青少年(使用多基因风险评分评估),以及其相应的对照组。在当前的试点研究中,值得注意的是,ADHD组的NSC繁殖小于对照,而在IPSC发育阶段没有发现差异。我们来自两种不同的增殖方法的结果表明,患者发现的功能和结构延迟可能与这些体外表型差异有关,但从明显的神经发育阶段开始。这些发现是多动症疾病建模领域的第一个发现,对于更好地了解该疾病的病理生理可能至关重要。
w1 冬季 ✓ 50 0.86 w2 冬季 ✓ 100 0.86 w3 冬季 ✓ 50 0.86 w4 冬季 ✓ 100 0.86 w5 春季 ✓ 50 0.86 w6 春季 ✓ 100 0.86 w7 春季 ✓ 50 0.86 w8 春季 ✓ 100 0.86 w9 夏季 ✓ 50 0.86 w10 夏季 ✓ 100 0.86 w11 夏季 ✓ 50 0.86 w12 夏季 ✓ 100 0.86 w13 秋季 ✓ 50 0.86 w14 秋季 ✓ 100 0.86 w15 秋季 ✓ 50 0.86 w16 秋季 ✓ 100 0.86 w17 冬季 ✓ 50 1.72 w18 春季✓ 100 1.72 w19 夏季 ✓ 50 1.72 w20 秋季 ✓ 100 1.72 w21 冬季 ✓ 50 1.72 w22 春季 ✓ 100 1.72 w23 夏季 ✓ 50 1.72 w24 秋季 ✓ 100 1.72 w25 冬季 ✓ 100 1.72 w26 春季 ✓ 50 1.72 w27 夏季 ✓ 100 1.72 w28 秋季 ✓ 50 1.72 w29 冬季 ✓ 100 1.72 w30 春季 ✓ 50 1.72 w31 夏季 ✓ 100 1.72 w32 秋季 ✓ 50 1.72
动机:识别抗体结合位点,对于开发疫苗和治疗性抗体至关重要,这些抗体是耗时且昂贵的过程。准确地预测了伞形结合位点,可以通过提高我们对抗体 - 抗原相互作用的理解来加快发展的速度。结果:我们提出了Parasurf,这是一个深度学习模型,可通过纳入表面几何和非几何因素来显着增强副群预测。对三种突出的抗体 - 抗原基准测试和测试,帕苏尔夫几乎在几乎所有指标中都取得了最先进的结果。与仅限于可变区域的模型不同,Parasurf证明了能够准确预测抗体整个FAB区域的结合得分的能力。此外,我们使用所采用的三个数据集中最大的分析进行了广泛的分析,重点介绍了三个关键组成部分:(1)对每个互补性确定区域环路的Paratope预测的详细评估,(2)模型的性能在重链上独家培训,以及(3)重型训练模型的结果,而无需将重型链置于重型链中。可用性和实现:Parasurf的源代码,以及所使用的数据集,预处理管道和经过训练的模型权重,可在https://github.com/aggelos-michael-michael-papadopoulos/parasurf上免费获得。联系人:angepapa@iti.gr,axenop@iti.gr补充信息:补充数据可从BioInformatics Online获得。
。cc-by-nc-nd 4.0国际许可证。根据作者/资助者,它是根据预印本提供的(未经同行评审的认证),他已授予Biorxiv的许可证,以在2025年1月28日发布的此版本中在版权所有者中显示预印本。 https://doi.org/10.1101/2025.01.17.633522 doi:Biorxiv Preprint
背景:人类诱导的多能干细胞(HIPSC)的人类睾丸器官的产生为性腺发育生物学和生殖疾病建模提供了令人兴奋的机会。但是,创建类型的类器官,这些器官紧密模仿睾丸的组织结构仍然具有挑战性。方法:在这项研究中,我们建立了一种使用逐步分化方法以及悬挂掉落和旋转培养系统的组合从HIPSC生成睾丸器官(TOS)的方法。通过检测形态,单细胞RNA测序和蛋白质谱证实了HIPSC衍生的前体睾丸细胞自组装成类器官的能力。通过测量转录组特征和功能特征的测量,包括激素的反应性和血液杀伤性(BTB)形成,以及通过记录对生殖毒素生殖的细胞的细胞活力和BTB完整性来评估睾丸类器官作为药物评估模型的可靠性。最后,我们应用了睾丸类器官来评估半瓜肽是胰高血糖素样肽-1受体激动剂(GLP-1 RA)对睾丸功能的影响,从而强调了它们作为药物评估模型的实用性。结果:这些类器官表现出睾丸状结构和BTB功能。RNA测序和功能测定确认睾丸类器官具有促性腺激素调节的基因表达谱和内分泌功能,与睾丸组织的基因表达谱和内分泌功能非常相似。值得注意的是,这些类器官表现出对半卢比德的敏感性。用半卢宾治疗导致睾丸激素水平降低和INHBB表达的下调,与先前的临床观察一致。结论:这些发现引入了一种从人多能干细胞中产生睾丸器官的方法,突出了它们作为研究睾丸功能,药物毒性的有价值模型,以及Semaglutide等化合物对睾丸健康的影响。
动脉粥样硬化性心血管疾病 (ASCVD) 仍然是全球最大的死亡原因 2 。血脂异常是与 ASCVD 发展有关的一个关键的可改变的因果风险因素。最近,G 蛋白偶联受体家族的成员 G 蛋白偶联受体 146 (GPR146) 被证明是血浆胆固醇的调节剂 3,4 。GPR146 在小鼠体内的肝脏抑制已显示出良好的特性,它对高胆固醇血症和动脉粥样硬化具有保护作用,这种作用独立于低密度脂蛋白受体 (LDLR) 通路 3 。为了更好地理解所涉及的生物学机制,我们开发了一种先进的基因工程人类诱导多能干细胞 (hiPSC) 模型,该模型因 GPR146 而无效。 GPR146 -/- 细胞系 (ITXi001-A-1) 源自我们实验室先前从尿液祖细胞 (ITXi001-A) 1 中重新编程的对照 hiPSC 的基因组版本。基因组版本使用 Alt-R™ CRISPR-Cas9 系统 (Integrated DNA Technologies) 进行,针对两个等位基因上的 GPR146 外显子 2。ITXi001-A-1 是通过挑选单个菌落建立的,其基因型通过 PCR 筛选 (图 1A - 上图和下图) 并通过 Sanger 测序确认 (图 1B)。我们进一步表明,GPR146 基因的遗传版本不会诱导基因组的脱靶版本(筛选 10 个预测位点 - (补充文件 3A)),也不会诱导 ITXi001-A-1 细胞的基因组完整性(分析 24 个拷贝数变异)(补充文件 1)。我们验证了 ITXi001-A-1 细胞不含支原体(补充文件 3B),并且它们与最初采集的尿液细胞来自同一个体(16 个 STR 的亲子鉴定 - 补充文件 2)。总体而言,ITXi001-A-1 细胞呈现:I- 与 ITXi001-A 细胞相比具有相似的形态(图 1C)II- 多能性标志物的阳性表达(通过 OCT3/4 和 TRA-1–60 的免疫荧光染色检测)(图 1D)。 III- 多能性细胞表面标志表达阳性(流式细胞术检测 SSEA-4 和 TRA1-60)(图 1E)。IV- 多能性标志物的表达水平与 ITXi001-A 细胞相同(NANOG、POU5F1 和 SOX2 - 通过 RT-qPCR 测量)(图 1F)。V- 具有优异的分化为中胚层、内胚层和外胚层的能力(通过 SOX17 和 FOXA2(中胚层);T(TBXT) 和 HAND1(内胚层)以及 PAX6 和 SOX1(外胚层)的 RT-qPCR 评估,与 ITXi001-A 细胞相似)(图 1G)。
摘要。本文提出了一种深度强化学习方法,用于智能电网中多能源系统的优化管理。智能电网中生产和存储单元的最优控制问题被表述为部分可观测马尔可夫决策过程 (POMDP),并使用参与者-评论家深度强化学习算法进行解决。该框架在一个新型多能源住宅微电网模型上进行了测试,该模型涵盖电力、供暖和制冷存储以及热力生产系统和可再生能源发电。处理此类多能源系统的实时最优控制时面临的主要挑战之一是需要同时采取多种连续行动。所提出的深度确定性策略梯度 (DDPG) 代理已证明能够很好地处理连续状态和动作空间,并学会了同时对生产和存储系统采取多种行动,从而可以联合优化智能电网中的电力、供暖和制冷使用情况。这使得该方法可应用于更大规模多能源智能电网(如生态区和智能城市)的实时最优能源管理,这些电网需要同时采取多项连续行动。
本研究涉及多能源系统 (MES) 建模和经济模型预测控制 (EMPC) 的高级控制。由于有多种能源载体,MES 可提供能源灵活性、效率和适应性。MES 被视为整合可再生能源的杠杆。本文开发了一种称为多产消者节点 (MPN) 的 MES 新型公式技术。MPN 使 MES 建模成为可能,考虑到 MES 动态、多种能源载体、转换器、并网和离网。此外,这种 MES 建模方法与 EMPC 等预测控制策略兼容。事实上,EMPC 能够考虑负载、天气、可再生能源和能源电网成本预测,以最大限度地降低经济成本。实施了一个真实案例研究来检查 MPN 功能,它由两种能源载体的可再生发电机、负载、存储组成。为了代表冬季和夏季的实际情况,我们开发了两种真实场景。通过 MPN 和 EMPC 高级控制建模,仿真结果表明,节点得到了最佳控制,设备动态在分钟尺度上得到考虑,并且在执行经济成本最小化的同时考虑了从一个载体到另一个载体的能量转换。所得结果表明,与基于规则的控制的基准相比,提出的 MPN 建模和优化方法在冬季情况下将经济成本降低了 8.21%,在夏季情况下将经济成本降低了 84.24%。
由于其无限的增殖潜力、整倍体状态以及向任何细胞类型分化的能力,人类多能干细胞 (hPSC)(无论是胚胎细胞还是诱导细胞)在疾病建模和生产临床应用细胞方面具有巨大潜力 [ 1 – 3 ]。尽管已经建立了来自患有各种疾病的患者的许多 hPSC 系,但是针对某些病理或罕见基因突变生成 hPSC 系仍然具有挑战性。此外,个体间的遗传异质性可能导致生物学变异,从而使系间比较困难,尤其是来自健康对照和患者的 hPSC 之间的比较 [ 4 , 5 ]。对 hPSC 进行遗传操作的能力为我们引入、修改或校正突变以及生成遗传匹配的同基因对照系提供了机会,从而建立明确的基因型-表型关联 [ 6 , 7 ]。近年来,基于位点特异性核酸酶(包括锌指核酸酶 (ZFN)、转录激活因子样效应核酸酶 (TALEN),尤其是成簇的规律间隔短回文重复序列 (CRISPR) 系统)的技术已使 hPSC 的基因组工程变得十分灵活 [8,9]。然而,由于 hPSC 的固有特性,包括相对较差的转染效率和转染后存活率低、难以分离克隆群、优先选择和扩增非整倍体克隆以及自发细胞分化,hPSC 工程仍然具有挑战性。为了缓解这些问题,已经描述了几种用于产生各种不同诱变事件的方案 [10-14]。尽管人们投入了大量精力来改进产生转基因 hPSC 的方法程序,但只有少数研究