θ 0 其中是斜入射角。一般来说,绕行相位全息图由许多散射体(像素)组成,每个散射体都可以实现所需的相位延迟。因此,由一系列错位的纳米结构形成超表面以实现真正的相位调制全息术。在我们的例子中,研究作为一种基本和未修饰的构建块的各向同性纳米结构,纯粹是为了验证空间频率正交性作为一个新的自由度。根据巴比涅原理 S1,S2,已知尺寸和形状的纳米孔和纳米盘可以看作是一对互补的构建块。除了前向散射强度外,互补孔径和不透明体的衍射图案非常相似。除了纳米制造的简易性和衍射效率之间的权衡之外,还相应地采用反射配置。
摘要:移动性和低能耗被认为是医疗监测系统 (HMS) 中使用的无线体域传感器网络 (WBASN) 的主要要求。在 HMS 中,使用能量有限的电池供电传感器节点来获取有关身体的重要统计数据。因此,需要节能方案来保持传感器节点的长期稳定连接。空闲监听、过度传输和接收控制消息、数据包冲突和数据包重传以及路径选择不当等活动会消耗大量能量,这可能会导致更多的能量消耗。自适应调度与节能协议的结合可以帮助在适当的时间选择合适的路径,以最大限度地减少控制开销、能耗、数据包冲突和过度空闲监听。本文提出了一种基于区域的节能多路径路由 (REMR) 方法,该方法将整个传感器网络划分为簇,最好有多个候选簇来代表每个簇。簇代表 (CR) 通过各种簇路由数据包。对于路由,需要考虑每条路径的能量需求,并选择能量需求最小的路径。同样,对于数据包路由,需要考虑端到端延迟、更高的吞吐量和数据包投递率。
摘要 感觉受体场足够大,可以容纳多个可感知的刺激。那么,大脑如何编码在特定时刻可能存在的每种刺激的信息?我们最近表明,当存在多个刺激时,单个神经元可以在某个时间段内对一个刺激和另一个刺激进行编码,这表明存在一种不同刺激的神经多路复用形式 (Caruso 等人,2018)。在这里,我们研究 (a) 这种编码波动是否发生在早期视觉皮层区域;(b) 编码波动如何在神经群体中协调;(c) 协调的编码波动如何取决于将刺激解析为独立对象还是融合对象。我们发现编码波动确实发生在猕猴 V1 中,但仅当两个刺激形成独立对象时才会发生。这种独立的物体会引起一种新的 V1 尖峰计数(“噪声”)相关性模式,涉及正值和负值的不同分布。这种双峰相关模式在表现出编码波动或多路复用最强证据的神经元对中最为明显。给定的一对神经元是否表现出正相关或负相关取决于这两个神经元是否对同一物体反应更好或具有不同的物体偏好。在 V4 中,对于单独的物体也观察到基于刺激偏好的尖峰计数相关性的不同分布,但当两个刺激融合形成一个物体时则不会出现这种情况。这些发现表明多个物体引起的反应动力学与单个刺激引起的反应动力学不同,这为多路复用假设提供了支持,并提出了一种尽管感觉编码明显粗糙但仍可以保留有关多个物体的信息的方法。
10 处理视觉信息的大脑神经网络具有与人工智能中常用于视觉处理的神经网络(例如卷积神经网络 (CNN))的结构特性截然不同的结构特性。但这些结构差异与网络功能之间的关系仍不得而知。我们分析了 V1 区大规模模型的视觉处理能力,该模型可以说是目前最全面的解剖和神经生理数据积累。事实证明,其网络结构可以诱导大脑的许多典型视觉处理能力,特别是能够多路复用不同的视觉处理任务,也可以处理时间分散的视觉信息,并且对噪声具有显著的鲁棒性。该 V1 模型还表现出大脑的许多典型神经编码特性,这解释了其出色的噪声鲁棒性。由于大脑中的视觉处理比常见计算机硬件中 CNN 的实现更加节能,这种类似大脑的神经网络模型也可能对技术产生影响:作为更节能的神经形态硬件中视觉处理的蓝图。
嵌合抗原受体 (CAR) T 细胞可以彻底改变癌症医学。然而,过度激活、缺乏肿瘤特异性表面标志物和抗原逃逸阻碍了 CAR T 细胞的发展。需要一种由临床批准的药物调节的多抗原靶向 CAR 系统。在这里,我们介绍了 VIPER CAR(多功能蛋白酶可调节 CAR),这是一组用病毒蛋白酶结构域设计的可诱导 ON 和 OFF 开关 CAR 电路。我们使用 FDA 批准的抗病毒蛋白酶抑制剂在异种移植肿瘤和细胞因子释放综合征小鼠模型中建立了它们的可控性。此外,我们将 VIPER CAR 与其他药物门控系统进行了对比,并展示了一流的性能。我们使用 ON VIPER CAR 和 OFF 来那度胺-CAR 系统展示了它们的体内正交性。最后,我们通过结合各种 CAR 技术设计了几个 VIPER CAR 电路。我们的多路复用、药物门控 CAR 电路代表了 CAR 设计的下一个进展,能够通过先进的逻辑和调节来增强 CAR T 细胞疗法的安全性。
在各种 ADC 架构中,FLASH ADC 被证明是高性能 ADC。所提出的 ADC 由基于多路复用器的编码器、开环比较器和电阻梯形网络组成。所提出的 ADC 采用 90nm CMOS 技术进行模拟。所提出的 ADC 的主要优点是静态功耗低。这是通过将基于多路复用器的编码器集成到 Flash ADC 中实现的。所提出的 ADC 的功耗为 26.65µw,输入电压为 1V,频率为 100MHz。设计的 Flash ADC 可用于高速应用。
Sensitive multiplexed quantification of protein biomarkers for early drug discovery and development Increasing sensitivity for quantification of surfactant proteins in matrix using the SCIEX 7500 system Bo An 1 , Timothy Sikorski 1 , John Mehl 1 , Eshani Nandita 2 , Remco van Soest 2 and Elliott Jones 2 1 Glaxosmithkline, Upper Providence, Pennsylvania; 2 Sciex,加利福尼亚州红伍德城,该技术说明使用高端三倍四极杆质谱仪在签名肽水平上对表面活性剂蛋白的高度敏感定量工作流程。通过改进的前端技术,可以在Sciex 7500系统上生成,捕获和传输更多离子,从而增强了表面活性剂蛋白的敏感性。Low-ng/mL lower limits of quantification (LLOQs) were achieved for the 4 surfactant proteins analyzed in human plasma.
摘要 — 太赫兹 (THz) 无线网络有望催化第五代 (B5G) 时代。然而,由于 THz 链路的方向性和视距需求,以及 THz 网络的超密集部署,介质访问控制 (MAC) 层需要面对许多挑战。更详细地说,通过结合能够在复杂且频繁变化的环境中提供“实时”解决方案的人工智能 (AI),重新考虑用户关联和资源分配策略的必要性变得显而易见。此外,为了满足多个 B5G 应用的超可靠性和低延迟需求,需要新颖的移动性管理方法。在此基础上,本文提出了一种整体的 MAC 层方法,该方法可实现智能用户关联和资源分配,以及灵活和自适应的移动性管理,同时通过最小化阻塞来最大限度地提高系统的可靠性。更详细地,记录了一种快速集中的联合用户关联、无线电资源分配和阻塞避免,该方法通过一种新颖的元启发式机器学习框架实现,可最大限度地提高 THz 网络性能,同时将关联延迟最小化大约三个数量级。为了在接入点 (AP) 覆盖范围内支持移动性和避免阻塞,讨论了一种用于波束选择的深度强化学习 (DRL) 方法。最后,为了支持相邻 AP 覆盖区域之间的用户移动性,报告了一种基于 AI 辅助快速信道预测的主动切换机制。
多模态学习研究的核心在于有效利用多模态之间的融合表示。然而,现有的双向跨模态单向注意力只能利用从一个源到一个目标模态的模态间相互作用。在模态数量有限且交互方向固定的情况下,这确实无法释放多模态融合的全部表达能力。在本文中,提出了多路多模态变换器(MMT),通过单个块而不是多个堆叠的跨模态块同时探索每个模态的多路多模态互相关。MMT 的核心思想是多路多模态注意力,其中利用多种模态来计算多路注意张量。这自然有利于我们开发全面的多对多多模态交互路径。具体而言,多路张量由多个相互连接的模态感知核心张量组成,这些核心张量由模态内交互组成。此外,张量收缩操作用于研究不同核心张量之间的模态间依赖关系。本质上,我们基于张量的多路结构允许将 MMT 轻松扩展到与任意数量的模态相关的情况。以 MMT 为基础,进一步建立分层网络,以递归方式将低级多路多模态交互传输到高级交互。实验表明,MMT 可以实现最先进或相当的性能。
• 使用 SLEEK ™ 方法,用工程化的 AsCas12a 编辑 iPSC,敲入 CD16 和 mbIL-15。3 同时,还用 AsCas12a 编辑 iPSC,敲除 CISH 和 TGFβR2。然后将 iPSC 克隆分化为 iNK 细胞。流式细胞术证明 DKI iNK 细胞表面表达 CD16 和 mbIL-15。• 使用 Incucyte ® 成像 NucLight Red 标记的 SK-OV-3 细胞进行 3D 肿瘤球体杀伤试验,以评估 iNK 细胞的细胞毒性。通过在基础培养基中培养野生型 (WT) 和 DKI iNK 细胞 21 天(不含支持细胞因子)来测量体外持久性。 • 非肥胖糖尿病 (NOD) 严重联合免疫缺陷 (scid) γ (NSG) 小鼠接种 0.25x 10 6 荧光素酶 (luc) 表达 SKOV-3 细胞系 (SKOV-3-luc) 卵巢肿瘤细胞。小鼠接受单次腹膜内 (IP) 剂量 500 万 WT iNK 或 EDIT-202 细胞,多次 IP 剂量 2.5 mg/kg 曲妥珠单抗 (TRA)。使用 Perkin Elmer 生物发光体内成像系统 (IVIS) 计算肿瘤负荷。披露