摘要:whirly1是一种小型植物特异性的ssDNA结合蛋白,双重位于叶绿体和核中,讨论是作为一种逆行信号,可作为逆行信号传递从叶绿素传递到细胞核的应激信号,并在那里触发与压力相关的基因表达。在这项工作中,我们调查了使用两条过表达线(OEW1-2和OEW1-15)在大麦的干旱应力反应中的功能。Whirly1的过表达延迟了原发性叶片中与干旱应力相关的发作。干旱应激的两个脱甲酸(ABA)依赖性标记基因HVNCED1和HVS40,其在干旱治疗期间诱导的野生型中的表达并未在过表达线中诱导。此外,叶片中的ABA浓度与干旱相关的浓度增加在Whirly1过表达线中被抑制。分析Whirly1功能获得的影响对核基因表达与干旱相关的重编程的影响,进行了RNASEQ进行比较野生型和过表达线的影响。群集分析揭示了一组高度上调的基因,该基因响应野生型的干旱,而不是在Whirly1过表达线中。是许多胁迫和脱落酸(ABA)相关的基因。与野生型相比,在OEW1系中上调的另一个簇包含上调的基因。这些与原代新陈代谢,叶绿体功能和生长有关。我们的结果表明,Whirly1充当枢纽,平衡与压力相关和发育途径之间的权衡。测试Whirly1的功能获得的功能是否影响与压力相关基因表达的表观遗传控制,我们分析了启动子不同区域和HVNCED1和HVS40的转录起始位点的干旱相关组蛋白修饰。有趣的是,在Whirly1过表达线中,两个基因的构想标记水平(H3K4ME3和H3K9AC)显然降低了。我们的结果表明,被讨论以作为逆行信号的Whirly1会通过差异组蛋白的修饰在干旱过程中影响与ABA相关的核基因表达的重编程。
摘要 绿色革命基于赤霉素 (GA) 激素系统的遗传改造,通过“矮化”基因突变降低 GA 信号,使植物矮化,从而使植物适应现代农业条件。矮化的强 GA 相关突变体往往胚芽鞘长度缩短,由于干旱条件下幼苗出苗效果不佳,导致产量降低。这里我们提出赤霉素 (GA) 3-氧化酶 1 (GA3ox1) 作为大麦的另一种半矮化基因,它既能最佳地降低植物高度,又不限制胚芽鞘和幼苗的生长。通过对大量大麦种质进行大规模田间试验,我们发现天然的 GA3ox1 单倍型可适度降低植物高度 5 – 10 厘米。我们使用 CRISPR/Cas9 技术,生成了几个新的 GA3ox1 突变体并验证了 GA3ox1 的功能。我们发现,改变 GA3ox1 活性会改变活性 GA 异构体的水平,从而使胚芽鞘长度平均增加 8.2 毫米,这可以为在气候变化下保持产量提供必要的适应性。我们发现 CRISPR/Cas9 诱导的 GA3ox1 突变将种子休眠期增加到理想水平,这可能有利于麦芽行业。我们得出结论,选择 HvGA3ox1 等位基因为开发具有最佳身高、更长胚芽鞘和额外农艺性状的大麦品种提供了新的机会。
总结绿色革命是基于gibberellin(GA)激素系统的遗传修饰,其基因突变降低了GA信号,赋予了较短的身材,从而使植物适应现代农业条件。具有较短身材的强大GA相关突变体通常会降低鞘总序长度,因此由于干旱条件下的幼苗出现而产生的折现收益率增长。在这里,我们将Gibberellin(GA)3-氧化酶1(GA3OX1)作为大麦的替代半弱基因,它结合了植物高度的最佳降低,而无需限制了红细胞和幼苗的生长。使用大型大麦加入收集的大型领域试验,我们表明天然的Ga3ox1单倍型将植物高度适中降低5-10厘米。我们使用了CRISPR/CAS9技术,生成了几种新型GA3OX1突变体,并验证了GA3OX1的功能。我们表明,改变的GA3OX1活性改变了活性GA同工型的水平,因此,鞘总成长度平均增加了8.2 mm,这可以提供必不可少的适应性以在气候变化下保持产量。我们透露,CRISPR/CAS9诱导的GA3OX1突变将种子休眠增加到理想水平,这可能会使麦芽产业有益。我们得出的结论是,选择HVGA3OX1等位基因为开发具有最佳身材,更长的鞘翅目和其他农艺特征的大麦品种提供了新的机会。
普遍的气候变化情景预计会导致灌溉水的供应量较小,从而导致农作物生产力低下和粮食安全损害。大麦是一种气候强壮的农作物,通常在印度边际土地的低投入条件下种植。气候变化也有望增加土壤的盐水和大麦的作用,而大麦的作用高度盐度耐受作物对于不仅要确保群众的粮食安全,而且还要确保营养安全至关重要。大麦由于碳水化合物,蛋白质和Öber的独特成分而表现出巨大的营养潜力,除了微量营养素的良好平衡。目前,生产总大麦的65-70%被用作动物饲料,25-30%用于麦芽作用,而总生产的约5%被用作人类食品目的,并且在该国室内地理位置上也是如此。但是,大麦的作用被预计在不仅作为工业农作物,而且是主要的谷物主食和牲畜饲料非常重要。因此,到目前为止,育种对大麦的繁殖效果不佳,因此预计在作物改善计划中将优先考虑大麦的改善。
谷物是人类最重要的食物来源。其中,面包小麦是世界上种植最广泛的作物,从总产量来看,仅次于大米,而大麦是第四大重要谷物。现代谷物作物固有的狭窄遗传多样性与其庞大复杂的基因组相结合,此前造成了遗传瓶颈,阻碍了育种进展以及生物技术中新开发的应用。长读测序技术的改进不断增强我们生成超连续染色体规模组装的能力,从而进一步提高基因分离的效率并揭示谷物作物物种进化的机制。尽管测序成本和生物信息学创新不断下降,但使用靶向富集方案和等位基因重测序的基因分型测序 (GBS) 是目前生成大型 SNP 数据集最具成本效益的方法。本《植物科学前沿》研究合集包含 16 篇文章,重点介绍了将多染色体规模基因组参考图组装与数量遗传学新方法相结合所带来的广泛实用性,以最大限度地利用有利的遗传性状变异。
植物使用复杂的免疫系统来感知病原体感染并以严格控制的方式激活免疫反应。在大麦中,HV WRKY2充当了抗白粉病真菌的大麦疾病耐药性的阻遏物,blumeria graminis f。 sp。hordei(bgh)。然而,HV WRKY2在其DNA结合和抑制剂函数及其靶基因中的分子特征未经表征。我们表明,HV WRKY2的W-box结合需要完整的WRKY结构域和75个氨基酸的上游序列,并且HV WRKY2 W-box结合活性与其在疾病耐药性中的抑制剂功能有关。染色质免疫沉淀(芯片) - seq分析鉴定了一种假定的壳蛋白受体基因HVCEBIP,作为过表达转基因大麦植物中HV WRKY2的靶基因。chip-qPCR和电泳迁移率转移测定法(EMSA)验证了HV WRKY2与HVCEBIP启动子中含有W-box的序列的直接结合。HV Cebip积极调节大麦对BGH的抵抗力。我们的发现表明,HV WRKY2通过直接靶向与病原体相关的分子模式(PAMP)识别受体基因来抑制大麦的基础免疫力,这表明HV CEBIP和可能的金属蛋白信号传导在大麦PAMP PAMP触发的免疫反应中对BGH感染的免疫反应。2022年中国作物科学学会和CAAS作物科学研究所。 Elsevier B.V.的发布服务代表KEAI Communications Co. Ltd. 这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。2022年中国作物科学学会和CAAS作物科学研究所。Elsevier B.V.的发布服务代表KEAI Communications Co. Ltd.这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。
CRISPR、Cas12a、CPF1、大麦、诱变、单子叶植物、基因组编辑摘要我们报告了首次成功、高效使用大麦中的 Lb Cas12a,并描述了两种新型 Cas12a 变体的开发和应用。总共我们使用二十种不同的指南比较了五种编码序列 (CDS) 变体,包括两种新型变体和两种指南架构,针对 5 种不同的靶基因。我们发现不同 CDS 版本 (0-87%) 和指南架构 (0-70%) 之间的编辑效率存在很大差异,并且表明我们的两个新型 CDS 版本在该物种的测试中大大优于其他版本。我们展示了产生的突变的遗传性。我们的研究结果强调了优化单个物种的 CRISPR 系统的重要性,并可能有助于在其他单子叶植物中使用 Lb Cas12a。正文 毛螺菌科细菌 Cas12a (Lb Cas12a) 可能是继化脓性链球菌 Cas9 (Sp Cas9) 之后植物基因组编辑中第二广泛使用的可编程核酸酶,并且具有一些潜在优势。首先,由于其对 TTTV PAM 的要求与 NGG 的 Sp Cas9 要求不同,它可用于 GC 沙漠,而 GC 沙漠通常存在于内含子、UTR 和启动子区域中。其次,Lb Cas12a 通常比 Sp Cas9 产生更大的缺失,这可能在缺失研究中有用。第三,虽然 Sp Cas9 在靶标的 PAM 近端切割产生平端,但 Lb Cas12a 在 PAM 远端区域切割产生粘端;这两个特征可能解释了使用 Lb Cas12a 实现的基因靶向发生率更高 (Wolter 和 Puchta,2019)。已知在植物中起作用的三种版本的 Lb Cas12a 针对一个大麦靶标进行了测试。首先,是水稻优化的编码序列 (CDS) (Os Cas12a) (Tang et al., 2017);其次是人类优化的 CDS (Hs Cas12a),在双子叶植物中具有功能 (Bernabé-Orts et al., 2019);第三是拟南芥优化的 CDS,包含 D156R“耐高温”突变 (tt At Cas12a) (Schindele and Puchta, 2020)。我们还创建了两个新版本,携带 D156R 突变的 Hs Cas12a (tt Hs Cas12a) 和携带 8 个内含子的 tt At Cas12 (tt At Cas12+int)。这些内含子之前曾显著提高过 Sp Cas9 的效率(Grutzner 2021),因此我们使用相同的在线工具(NetGene2 - 2.42 - Services - DTU Health Tech)在我们的 tt At Cas12+int 设计中为拟南芥选项获得了较高的剪接置信度。
(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此预印本的版权所有者此版本于 2022 年 2 月 26 日发布。;https://doi.org/10.1101/2022.02.25.481987 doi:bioRxiv preprint
真核翻译起始因子 4E (EIF4E) 是许多植物物种中马铃薯病毒感染的已知易感因子。大麦黄花叶病毒病是由大麦黄花叶病毒 (BaYMV) 和大麦温和花叶病毒 (BaMMV) 引起的,可导致冬大麦产量损失高达 50%。秋季,幼小的大麦植株的根部被土传的根瘤寄生虫 Polymyxa graminis L. 感染,该寄生虫是病毒载体。病毒建立并系统性扩散到植物上部后,叶子上首先出现黄色花叶。在植物进一步发育的过程中,该病会导致叶子坏死,并且更易受霜冻伤害。由于 HvEIF4E 基因的 rym4 和 rym5 等位基因变体,超过三分之二的欧洲冬大麦品种对 BaYMV 和 BaMMV 具有抗性。然而,几种 BaYMV 和 BaMMV 菌株已经克服了 rym4 和 rym5 介导的抗性。因此,大麦育种需要新的抗性等位基因。因此,我们在 BaMMV/BaYMV 易感冬大麦品种“Igri”中通过 Cas9 内切酶对 EIF4E 基因进行了定向诱变。产生了小插入,导致翻译阅读框发生移位,从而导致 EIF4E 功能丧失。突变发生在原代突变体中已经处于纯合状态。它们的后代被证明总是纯合的并且完全抵抗 BaMMV 的机械接种。EIF4E 敲除植物表现出正常的生长习性并产生谷物,但产量受损。
在过去几年中,在植物中使用基于RNA的CAS9基因组编辑的进展一直很快。基因组编辑的理想应用是基因靶向(GT),因为它允许广泛的精确修饰。但是,这仍然是不具备的,尤其是在关键农作物中。在这里,我们使用Planta策略描述了CAS9目标位置的成功,可遗传的基因靶向,但使用小麦矮人病毒复制品未能实现相同的方法,以增加维修模板的拷贝数。没有复制子,我们能够删除目标基因的150 bp的编码顺序,同时将框架内麦克利融合在一起。从14种原始转基因植物开始,两家植物似乎具有所需的基因靶向事件。从其中一种T0植物中,确定了三个独立的基因靶向事件,其中两个是可遗传的。当包括复制子时,产生了39种T0植物,并显示为修复模板的高拷贝数。然而,尽管与非修复策略相比,T1筛选的17条线没有引起显着或可遗传的基因靶向事件。调查表明,复制子方法创建的高拷贝数量的高拷贝数导致假阳性PCR结果,在序列水平上与GT研究广泛使用的连接PCR屏幕中的真实GT事件无法区分。在成功的非修复方法中,在T1中获得了可遗传基因靶向事件,随后,发现T-DNA与靶向基因座有关。因此,靶标和供体位点的物理接近可能是成功基因靶向的一个因素。