从不同温度下,大麦种子提取物对1M盐酸在1M盐酸中腐蚀的作用是从它们作为绿色抑制剂在清洁和降水过程中的潜在用途的角度研究的。使用50%乙醇/水(VOL)溶液进行提取。使用了两种提取方法:浸泡和超声。通过通过电化学方法(Potentiodynalicallization(Tafel曲线)和电化学耐药性光谱)研究吸附和腐蚀过程来研究抑制剂的抑制作用机制。研究结果没有表明提取方法对抑制行为没有影响,抑制作用作为浓度的函数显示,抑制效率的抑制效率显着提高到浓度为400 ppm,然后在这两种方法中都与其无关。然而,浸泡方法的抑制效率在800 ppm时(87.01%,而超声方法为80%)。对该提取物的抑制机制的研究表明化学吸附的可能性。抑制活性随温度增加。抑制活性随温度增加。
大麦(Hordeum vulgare)是最广泛的谷物作物之一,具有5.1GBP的大基因组。通过各种国际合作,该基因组最近通过利用可用的遗传资源和基因组资源进行了对染色体规模进行审查和组装。在世界范围内收集并保存了许多野生和耕种的大麦配件。这些加入对于获得多种自然和诱发的大麦变种至关重要。Barley Bioresource项目旨在根据纯化的种子和大量收集的加入的DNA样品研究该作物的多样性。该项目的长期目标是为全球主要的大麦加入的基因组序列提供基因组序列。鉴于技术局限性,已经采用了一种策略来建立选定数量的加入的外显结构,并对几个主要代表物的基因组进行高质量的染色体规模组装。对于未来项目,有效的注释管道对于确定基因组和基因的功能以及将此信息用于基于序列的数字大麦育种至关重要。在本文中,作者审查了现有的大麦资源及其应用程序,并讨论了大麦基因组学研究的未来方向。
普遍的气候变化情景预计会导致灌溉水的供应量较小,从而导致农作物生产力低下和粮食安全损害。大麦是一种气候强壮的农作物,通常在印度边际土地的低投入条件下种植。气候变化也有望增加土壤的盐水和大麦的作用,而大麦的作用高度盐度耐受作物对于不仅要确保群众的粮食安全,而且还要确保营养安全至关重要。大麦由于碳水化合物,蛋白质和Öber的独特成分而表现出巨大的营养潜力,除了微量营养素的良好平衡。目前,生产总大麦的65-70%被用作动物饲料,25-30%用于麦芽作用,而总生产的约5%被用作人类食品目的,并且在该国室内地理位置上也是如此。但是,大麦的作用被预计在不仅作为工业农作物,而且是主要的谷物主食和牲畜饲料非常重要。因此,到目前为止,育种对大麦的繁殖效果不佳,因此预计在作物改善计划中将优先考虑大麦的改善。
谷物是人类最重要的食物来源。其中,面包小麦是世界上种植最广泛的作物,从总产量来看,仅次于大米,而大麦是第四大重要谷物。现代谷物作物固有的狭窄遗传多样性与其庞大复杂的基因组相结合,此前造成了遗传瓶颈,阻碍了育种进展以及生物技术中新开发的应用。长读测序技术的改进不断增强我们生成超连续染色体规模组装的能力,从而进一步提高基因分离的效率并揭示谷物作物物种进化的机制。尽管测序成本和生物信息学创新不断下降,但使用靶向富集方案和等位基因重测序的基因分型测序 (GBS) 是目前生成大型 SNP 数据集最具成本效益的方法。本《植物科学前沿》研究合集包含 16 篇文章,重点介绍了将多染色体规模基因组参考图组装与数量遗传学新方法相结合所带来的广泛实用性,以最大限度地利用有利的遗传性状变异。
印度是世界贸易组织(WTO)的签署人,该组织成立于1995年1月。关于关税和贸易(GATT)的一般协议(GATT)将农业承认为投资和利润的规则结合的企业,并将其纳入乌拉圭回合(1986-1994)的首次谈判中。印度成为1994年知识产权权利协议(TRIP)(TRIPS)与贸易相关的方面的签署人,这是必要的。本协议的第27.3(b)条要求成员国通过专利或有效的SUI通用系统或其任何组合来保护植物品种。1970年现行的《印度专利法》排除了专利性的农业和园艺生产方法。在2001年,在实现育种者,农民和当地社区的权利方面发生了重大发展。印度政府通过了对植物品种和农民权利法(PPV&FR)的保护。为保护植物品种的Sui Generis系统是开发了整合育种者,农民和乡村社区的权利,并照顾了公平分享福利的担忧。与在不同国家存在或制定的其他类似立法相比,它在受保护的属/物种,水平和保护期方面具有灵活性。该法案涵盖除微生物以外的所有类别的植物。目的是通过有效的SUI通用系统提供有效的植物品种保护系统。该行为的目标是:
• 谷物杀菌剂是一种三元配方,包括两种琥珀酸脱氢酶抑制剂 (SDHI) – 氟吡菌酰胺和异氟菌酰胺(也称为 iblon) – 以及脱甲基化抑制剂 (DMI) 丙硫菌唑
Murukarthck Jayakodi 1,31,34 , Qiongxian Luke 2,3,34 , M. Timothy Rabanus-Wallace 1,34 , Micha Bayer 4 , Thomas Lux 5 , Benjamin Jaegle 6 , Wubishet Bekele 9,32 , Brett Chavang 10 , Boyke jørgensen 2 , Jia-wu Febig 1 , Anne Fiebig 1 , Hedrun Gundlach 5 , Georg Ha Berer 5 , Mats Hansson 13 , Axel HimMelbach 1 , iris Hoffe 1 , Robert 1 , Haifei Hu 12,14 , Sachiko Isobe 15 , Sandic M. Kale 2,33 6 , Manuela KNAAFT 1 , Simon G. Krattinger 17 , Jochen Kumlehn 1 , Chengdao Li 12,18,19 , Marone 1 , Andreas Maurer 20 , Klaus F. X. Mayer 1 , 22 , Emiko Murozuka 20 , Pierre A. Pierre A. 24 ro sato 15,27 , danta schüler 1 , Thomas Schmutzer , Uwe Scholz 1 , Miriam Schreiber 4 n 2 , Josquin F. TIBBTS 16 , Martin Toft Simmelsgard Nielsen 2 , Cynthia Voss 2 , Penghao Wang 12 , Robbie Waught 12 n 2 , Runxuan Zhang 4 , Xiao-Qi Zhang 12 , Thomas Wicker 6 ✉ , Christophy Dockter 2 ✉ , Martin Mascher 1,30 ✉ & Nils Stein 1,20 ✉
植物免疫是一个多层次的过程,包括识别病原体的模式或效应物以引发防御反应。这些包括诱导通常会限制病原体毒力的多种防御代谢物。在这里,我们在代谢物水平上研究了大麦根与真菌病原体根腐病菌 ( Bs ) 和禾谷镰刀菌 ( Fg ) 之间的相互作用。我们发现大麦烷是一组以前未描述过的具有抗菌特性的罗丹烷相关二萜类化合物,是这些相互作用中的关键参与者。Bs 和 Fg 感染大麦根会引发 600 kb 基因簇中的大麦烷合成。在酵母和本氏烟中异源重建生物合成途径产生了几种大麦烷,包括功能最丰富的产品之一 19-b-羟基大麦三烯酸 (19-OH-HTA)。该簇二萜合酶基因的大麦突变体无法产生大麦烷,但出乎意料的是,Bs 的定植率却降低了。相比之下,另一种大麦和小麦真菌病原体禾谷镰刀菌在完全缺乏大麦烷的突变体中的定植率要高 4 倍。因此,19-OH-HTA 可增强 Bs 的发芽和生长,而抑制其他致病真菌,包括 Fg。显微镜和转录组学数据分析表明,大麦烷可延缓 Bs 的坏死营养期。综上所述,这些结果表明,诸如 Bs 之类的适应性病原体可以破坏植物的代谢防御,以促进根部定植。
摘要:高氮利用效率(NUE)或耐低氮的作物育种被认为是减少氮肥过量使用造成的成本、碳足迹和其他环境问题的理想解决方案。作为谷物作物的模型植物,大麦具有许多优点,包括适应性好、生育期短、抗逆性强或耐逆性强。因此,提高大麦 NUE 的研究不仅有利于氮高效大麦育种,而且还将为其他谷物作物的 NUE 改良提供参考。本文总结了大麦对氮营养反应的理解、NUE 或耐低氮性的评估、与提高 NUE 相关的 QTL 定位和基因克隆以及氮高效大麦育种方面的最新进展。此外,还介绍了可用于揭示大麦 NUE 的分子机制或提高大麦 NUE 育种的几种生物技术工具,包括 GWAS、组学和基因编辑。本文还讨论了揭示提高其他作物氮利用效率的分子机制的最新研究思路,从而为提高大麦的氮利用效率提供了更好的理解,并为该领域的未来研究提供了一些方向。