SLS遭到了延误的困扰,这导致这个已经昂贵的项目成为有史以来最具发弹的火箭。该项目的高昂成本已引起了多年来NASA官员和政府监管机构的批评。总共SLS开发自2011年该计划成立以来,SLS的开发费用为185亿美元。进一步分解了成本,您可以看到SLS上的4个不可解决的发动机中的每一个都花费了NASA的费用约为1.5亿美元。对于单个发动机的成本,NASA可以购买猎鹰重型发射,该发射量可以将SLS预测能够的总质量的2/3延伸到轨道上。对于SLS上的4个发动机的成本,一些Falcon重型发射的发射可以将质量2.5倍输送到轨道上。
Marshall 开发、测试和管理科学仪器、实验和航天器,收集有关地球和太空的重要信息。Marshall 的科学研究包括广泛的地球科学、太阳物理学、天体物理学和行星科学研究。这些实验包括从最小的纳米卫星和亚轨道探空火箭到管理钱德拉(NASA 的大型天文台之一)的任务。凭借 SERVIR 等地球科学项目,Marshall 在及时向最需要的人提供科学数据方面处于领先地位。Marshall 的科学家和工程师团队提供了成功完成 NASA 任务以及将人类探索扩展到比以往更深入太阳系所需的技能组合。先进制造业
Jacobs 为位于阿拉巴马州亨茨维尔的 NASA 马歇尔太空飞行中心 (MSFC) 提供工程、科学和技术服务,合同内容包括工程服务和科学能力增强。Jacobs 自 1989 年以来一直是 MSFC 的总承包商,支持 NASA 的重大项目,包括太空发射系统、国际空间站、空间光学制造、地球和空间科学以及先进推进系统开发。Jacobs 还运营和维护 NASA 的材料机械测试设施,支持广泛的材料开发、材料科学和测试;并管理伽马射线爆发监测观测设施。
铜水微型热管和 k-core 封装石墨热管理技术已开发用于高性能 ASIC(倒装芯片和微处理器)的直接热管理,并已成功获得太空飞行状态的资格。该技术可实现高性能、组件级直接冷却,并增强从底盘接口到空间散热器的底盘级热扩散。该技术使未来电信卫星有效载荷的散热发生了重大变化。建造了一个由三个代表性面包板底盘组成的资格测试车辆,带有微型热管热管理系统 (TMS),用于代表性倒装芯片微处理器热负荷的直接热管理以及与底盘级 k-Core 扩散器的热连接。飞行演示测试包括真空环境中的性能测试、热特性、老化和寿命测试以及热机械测试。微型热管和 k-Core TMS 技术已达到 TRL 8,可部署在直接微处理器热管理和热链接应用中,以克服传导传热的局限性。本文概述了该技术、资格测试计划和资格测试数据。
下午 4:25 成功秘诀:任务多元化,实现互补任务组合 平衡任务规模和资源消耗与科学和探索目标需要 NASA、其他机构、行业和国际合作伙伴之间的协调,以实现整个机构的最高科学和探索价值。该小组将讨论政府间和国际合作伙伴之间的多样化任务管理,以最大程度地利用所需的资产和专业知识。• Ann Zulkosky,NASA 项目总监,洛克希德马丁公司
作为首席技术专家,我拥有截然不同的视角。NASA 的专业知识正在推动地月商业经济的发展和成功。太空运输的进步将以更高的精度将更大的有效载荷运送到以前无法到达的目的地。我们等待着通过这些大门的詹姆斯韦伯太空望远镜光学系统的发射,并且正在制造成像 X 射线偏振探测器光学系统。生命支持解决方案正在进行中,以将人类的存在延伸到低地球轨道之外。我们正在学习的不仅仅是从月球带回样本,而且还要利用月球资源进行可持续探索。最近的先进制造发展包括将制造时间和成本缩短一个数量级,MSFC 正在引领这些技术的极端环境应用。我们必须永远记住,在研究和技术方面的投资为 MSFC、NASA 和国家播下了未来成功的种子。这些页面代表了未来辉煌岁月的萌芽。
在过去的 25 年里,美国国家航空航天局 (NASA) 戈达德太空飞行中心工程理事会的光子学小组为许多科学和导航仪器的飞行设计、开发、生产、测试和集成做出了巨大贡献。从月球到火星的计划将在很大程度上依赖于利用商业技术来制造具有紧迫时间表期限的仪器。该小组在筛选、鉴定、开发和集成用于航天应用的商业组件方面拥有丰富的经验。通过保持适应性并采用严格的组件和仪器开发方法,他们与行业合作伙伴建立并培养了关系。他们愿意交流在包装、零件构造、材料选择、测试以及对高可靠性系统实施至关重要的设计和生产过程的其他方面的经验教训。因此,与行业供应商和组件供应商的成功合作使从月球到火星(及更远的地方)的任务取得了成功,同时平衡了成本、进度和风险状况。在没有商业组件的情况下,该小组与戈达德太空飞行中心和其他 NASA 现场中心的其他团队密切合作,制造和生产用于科学、遥感和导航应用的飞行硬件。这里总结了过去十年仪器开发的经验教训和从子系统到光电元件级别收集的数据。