由于其无与伦比的定时分辨率和量子效率,超导纳米线单光子探测器(SNSPD)已成为Quantum Optics的主要技术。SNSPD可以以高于5 t的磁场的高速率以极高的检测效率运行,而深色计数速率接近零。效果,以新型的超导电子设备作为混合低温性驱动器读取结构,以开发低功率的冷冻量读数ASIC。由于纳米线是核和粒子物理领域中相对较新的技术,因此拟议的研发计划将研究超导纳米线传感器,超导电子设备以及原型Crocecmos Front-End End End ASIC的辐射硬度。我们将在高背景辐射环境中运行时测试这些设备的性能。我们还将研究暴露于强烈的电子,中子和伽马辐射来源的超级传导设备的辐射硬度,以识别传感器的失效模式,否则,预计会很难辐射。
长期植入的神经微电极是神经科学研究和新兴临床应用的有力工具,但由于它们在体内数月后容易失效,因此其实用性受到限制。一种失效模式是保护导电迹线免受盐水环境影响的绝缘材料的降解。研究表明,机械应力会加速材料降解,而机械应力往往集中在凸起的地形上,例如导电迹线。因此,为了避免凸起的地形,我们开发了一种制造技术,将迹线凹进(埋入)干蚀刻、自对准沟槽中。沟槽的深度和迹线的厚度相匹配,以使上覆的绝缘材料平坦,根据有限元建模,这可以降低绝缘材料中的应力集中。在这里,我们详细介绍了工艺优化、固有应力建模以及使用 SEM、聚焦离子束横截面、轮廓测量和电化学阻抗测试进行表征。该技术不需要额外的掩模,易于与现有工艺集成,并产生约 10 纳米内的平整度。
海洋能源结构通常由先进的复合材料制成,在使用过程中会受到极端海洋环境的影响。在极端海洋环境中,海水流和波浪反复加载结构,从而导致两种环境条件:水侵入和机械疲劳。在之前的研究中,这两种环境条件是按顺序应用的,其中复合材料样品经过老化,然后进行机械测试。为了了解动态载荷和水侵入对复合材料的综合影响,本研究涉及在水箱中对复合材料试样进行静态和疲劳四点弯曲测试。水箱的设计和制造适合 100 kN 或 250 kN 负载框架。水下疲劳测试的弯曲强度值、失效循环和失效模式结果将用于指导海洋能源结构设计。试样规模测试方法将用于扩大规模并为后续子组件测试和标准制定提供参考。根据知情标准设计海洋能源结构的好处是降低终生成本并提高可靠性和能源产量,最终实现可持续的低碳能源系统。
2.2.5.e 对于应力集中区域的元件,即开口的拐角、主要支撑结构构件的肘板的趾部和跟部,在计算航海载荷工况(S + D 设计组合)的屈服利用系数时,材料的屈服应力不应大于 315 N/mm 2。当使用高强度钢不能提高高循环载荷下结构细节的疲劳强度时,这可用作控制高循环疲劳损伤的隐性方法。在许多情况下,由于结构中允许的应力较高,使用高强度钢建造的结构细节的疲劳损伤实际上比使用低碳钢建造的结构细节更严重。这种对高强度钢屈服强度利用的限制不适用于港口/油罐试验载荷工况(S 设计组合)。这些载荷工况所代表的相关失效模式是低周疲劳(重复屈服),可能由于加载/卸载顺序而发生。对于低周疲劳,疲劳强度随屈服强度的增加而增加,并且与材料的屈服强度成正比。另请参阅 2.3.5.h。
在本文中,我们研究了 3D 打印聚合物复合材料在经历大变形时的失效行为。将实验结果与使用具有能量阈值和有效平面应力公式的相场断裂法的数值模拟进行了比较。将开发的框架应用于由嵌入软基质中的三个刚性圆形夹杂物组成的复合系统。特别是,我们研究了几何参数(例如夹杂物之间的距离和初始缺口的长度)如何影响软复合材料的失效模式。我们观察到复杂的失效序列,包括块体材料中的裂纹停止和二次裂纹萌生。值得注意的是,我们的数值模拟捕捉到了复合材料失效行为的这些基本特征,数值结果与实验结果高度一致。我们发现复合材料的性能(强度和韧性)可以通过选择夹杂物的位置来调整。然而,我们报告称,最佳夹杂物间距并不是唯一的,还取决于初始缺口长度。这些发现为设计性能增强的软复合材料提供了有用的见解。
开发分析方法(“或正交各向异性粘合搭接接头”),以解释室温下的材料非线性是本文报告的研究的主要目标。目标是使用这些方法来预测机械行为、极限载荷和故障模式。为了实现这一目标,开发了新的分析程序,并成功地用离散元技术检查了单、双和阶梯搭接粘合连接配置。通过在静态单调递增载荷下制造和评估各种简单接头样品,对这些非线性分析进行了实验验证。失效载荷和模式被用作主要的证实特征,但在中等载荷下观察到了少数这些简单接头样品的机械行为,发现与分析预测的行为相比更为有利。利用这些方法,设计、制造并评估了室温下静态单调递增载荷下的更大、更复杂的粘合接头。通过新的分析,可以准确预测任何中间载荷下的极限载荷、失效模式和详细应变行为,实验观察也证实了这一点。这些技术被放入用于结构应用的计算机化设计/分析程序中,该程序用于生成粘合接头设计允许曲线。
开发分析方法(或正交各向异性粘合搭接接头)是本文报告的研究的主要目标,这些方法考虑了室温下材料的非线性。目标是利用这些方法来预测机械行为、极限载荷和故障模式。为了实现这一目标,开发了新的分析程序,并成功地用离散元技术对单、双和阶梯搭接粘合连接配置进行了检查。通过在静态单调递增载荷下制造和评估各种简单的接头样品,对这些非线性分析进行了实验验证。失效载荷和模式被用作主要的证实特性,但在中等载荷下观察到了少数这些简单接头样品的机械行为,发现与分析预测的行为相比更为有利。利用这些方法,设计、制造了更大、更复杂的粘合接头,并在室温静态单调递增载荷下进行了评估。新的分析方法可以准确预测任何中间载荷下的极限载荷、失效模式和详细应变行为,实验观察也证实了这一点。这些技术被纳入计算机化设计/分析程序,供结构应用使用,该程序用于生成粘合接头设计允许曲线。
图 36:Vitel v. 2000 s175 熔接机 .......................................................................................... 67 图 37:FBG 的放置 ................................................................................................................ 68 图 38:激光光源的视觉指示 ................................................................................................ 69 图 39:验证 FBG 功能的测试信号。 ................................................................................ 69 图 40:上部应变计附件 ...................................................................................................... 70 图 41:上部和下部应变计 #1 和 #2 ................................................................................ 70 图 42:微测量 P3 列车指示器和记录器以及 LCD 显示屏。 ................ 72 图 43:应力和温度应力随时间的变化 (Vergani、Colombo 和 Libonati 2014) ............................................................................................................. 74 图 44:每个间隔的热曲线 (Vergani、Colombo 和 Libonati 2014) ............................................................................. 75 图 45:涡轮叶片的热成像数据 (Dutton 2004)。 ............................................................................. 75 图 46:测试样本大小 ............................................................................................................. 76 图 47:材料属性样本 12 层 3 x (25 x 250) ............................................................................. 77 图 48:拉力试验机 (MTS Insight 310)。 ........................................................... 78 图 49:25 毫米样品应力与应变图 .............................................................................. 79 图 50:3 个样品的平均弹性模量 .............................................................................. 80 图 51:三点弯曲夹具(ISO 1998) .............................................................................. 82 图 52:进行三点弯曲测试的三个样品 ............................................................................. 84 图 53:弯曲试验前后 ............................................................................................. 84 图 54:三个样品的弯曲与载荷图 ............................................................................. 85 图 55:失效模式 ............................................................................................................. 86 图 56:最外层的弯曲断裂。 ............................................................................................. 87 图 57:第一个拉伸样品顶视图。 ........................................................................... 89 图 58:第二个拉伸样品正面图 .............................................................................. 89 图 59:使用第一个样品进行初步测试以及裂纹扩展的光学测量 91 图 60:用于模拟结冰的塔斯马尼亚橡木轮廓 ................................................................... 92 图 61: 第 2 次拉伸样品顶视图 .............................................................................................. 92 图 62: 控制第 2 次拉伸样品的形状 .............................................................................................. 92 图 63: 第 2 次拉伸样品侧视图 ...................................................................................................... 93 图 64: 拉伸试验的失效模式(标准 2000) ............................................................................. 94 图 65: 弯曲样品的顶视图 ...................................................................................................... 94 图 66: 弯曲样品的前视图 ...................................................................................................... 95 图 67: 上部应变计附件 ............................................................................................................. 95 图 68: 传感器放置的侧视图 ............................................................................................................. 96 图 69: 夹具中的弯曲样品 ............................................................................................................. 96 图 70: 弯曲试验的失效模式(标准 2000) ............................................................................. 97 图 71: 全部三个样品喷涂黑色以准备进行热成像测试 ...................................................................... 98 图 72:热成像测试期间的第一个和第二个拉伸样品 ...................................................................... 99 图 73:810 疲劳机的设置 ...................................................................................................... 99 图 74:热弹应力分析 ............................................................................................................. 100 图 75:拉伸初始测试 ............................................................................................................. 101 图 76:循环中的热成像图片 ............................................................................................. 102 图 77:热成像结果 ............................................................................................................. 103 图 78:视觉裂纹萌生 ............................................................................................................. 103 图 79:第二个拉伸样品的应变数据 ............................................................................................. 10495 图 67:上部应变计附件 ...................................................................................................... 95 图 68:传感器放置侧视图 ...................................................................................................... 96 图 69:夹具中的弯曲样品 ...................................................................................................... 96 图 70:弯曲测试的故障模式(标准 2000) ............................................................................. 97 图 71:为准备进行热成像测试,所有三个样品都喷涂黑色 ............................................................. 98 图 72:热成像测试期间的第一个和第二个拉伸样品 ............................................................. 99 图 73:810 疲劳机的设置 ............................................................................................. 99 图 74:热弹应力分析 ............................................................................................................. 100 图 75:拉伸初始测试 ............................................................................................................. 101 图 76:循环中的热成像图片 ............................................................................................. 102 图 77:热成像结果 ............................................................................................................. 103 图 78:视觉裂纹萌生 ................................................................................................ 103 图 79:第二个拉伸样品的应变数据 .............................................................................. 10495 图 67:上部应变计附件 ...................................................................................................... 95 图 68:传感器放置侧视图 ...................................................................................................... 96 图 69:夹具中的弯曲样品 ...................................................................................................... 96 图 70:弯曲测试的故障模式(标准 2000) ............................................................................. 97 图 71:为准备进行热成像测试,所有三个样品都喷涂黑色 ............................................................. 98 图 72:热成像测试期间的第一个和第二个拉伸样品 ............................................................. 99 图 73:810 疲劳机的设置 ............................................................................................. 99 图 74:热弹应力分析 ............................................................................................................. 100 图 75:拉伸初始测试 ............................................................................................................. 101 图 76:循环中的热成像图片 ............................................................................................. 102 图 77:热成像结果 ............................................................................................................. 103 图 78:视觉裂纹萌生 ................................................................................................ 103 图 79:第二个拉伸样品的应变数据 .............................................................................. 104第二个拉伸样品的应变数据................................................................................104第二个拉伸样品的应变数据................................................................................104
2.1 引言................................................................................................................................................ 14 2.2 结构验证试验............................................................................................................................... 14 2.2.1 定义........................................................................................................................................ 14 2.2.2 结构验证试验的应用......................................................................................................................... 18 2.2.2.1 结构完整性和残余机械性能....................................................................................... 21 2.2.3 验证试验载荷的应用.................................................................................................................... 22 2.2.4 新型验证试验方法中的问题.................................................................................................... 24 2.2.5 结构验证试验评审的讨论和结论.................................................................................................... 25 2.3 复合材料结构损伤.................................................................................................................... 27 2.3.1 引言........................................................................................................................................ 27 2.3.2 损伤和损伤机制.................................................................................................................... 27 2.3.2.1 简介 ................................................................................................................................ 27 2.3.2.2 复合材料 T 型接头的分层损伤 .............................................................................................. 28 2.3.2.3 孔隙率和空隙 ................................................................................................................ 32 2.3.3 损伤容限、剩余强度和寿命预测 ............................................................................................. 36 2.3.4 案例研究:T 型加筋复合材料板(T 型接头) ............................................................................. 38 2.3.4.1 简介 ................................................................................................................................ 38 2.3.4.2 粘合结构 ............................................................................................................................. 40 2.3.4.3 T 型接头设计和失效模式 ................................................................................................ 41 2.3.5 复合材料结构损伤总结 ............................................................................................................. 43 2.4 适用于验证测试的 NDT 技术 ............................................................................................. 44 2.4.1 简介......................................................................................................................................... 44 2.4.2 声发射检测...................................................................................................................... 46 2.4.3 表面应变和位移映射............................................................................................................... 48 2.4.4 振动分析......................................................................................................................................... 51 2.4.5 伴随 PT 的 NDT 技术总结......................................................................................................... 51 2.5 模态分析......................................................................................................................................... 51 2.5.1 简介......................................................................................................................................... 51 2.5.2 频率响应......................................................................................................................................... 53 2.5.2.1 简介......................................................................................................................................... 53 2.5.2.2 损伤检测质量......................................................................................................................... 55 2.5.2.3 FR 技术的应用......................................................................................................................... 58 2.5.2.4 频率响应技术的结论和未来研究......................................................................................... 61 2.5.3 随机减量................................................................................................................................ 61........................................... 55 2.5.2.3 频率响应技术的应用 ...................................................................................................... 58 2.5.2.4 频率响应技术的结论和未来研究 .............................................................................. 61 2.5.3 随机减量 ................................................................................................................................ 61........................................... 55 2.5.2.3 频率响应技术的应用 ...................................................................................................... 58 2.5.2.4 频率响应技术的结论和未来研究 .............................................................................. 61 2.5.3 随机减量 ................................................................................................................................ 61
由于金属合金重量轻、机械性能高,复合材料正在航空航天、汽车、船舶和建筑部件等多种先进应用中取代金属合金。因此,开发抗损伤和耐用的复合材料是必要的。当然,纤维基体脱粘、基体微裂纹和冲击损伤是复合材料应用中经常遇到的主要失效模式。此外,复合材料的部署和维护对机翼和尾翼等关键结构部件构成了挑战。因此,先进的材料和方法对于解决这些问题至关重要。使用复合材料的自修复技术似乎很有前景,因为它旨在修复或修复结构中的断裂和损伤起始和/或扩展。自修复复合材料可防止失效并延长关键结构的使用寿命。由于这些材料可以触发几乎自动修复,因此结构的维护可以大大简化,其中一些不需要任何外部干预即可启动修复过程。自修复复合材料能够在损坏开始时自动修复。早期的修复能力发展概念依赖于模仿树木和动物等生物体,这激发了开发自修复材料的研究。过去几十年来,人们一直在研究自修复材料和复合材料,特别是由自修复环氧树脂的发展推动(White 等人,2002 年)。自修复机制可分为两种类型,外在修复和内在修复。外在愈合基于使用愈合剂作为附加添加剂,而内在愈合涉及材料结构中的可逆分子键(超分子化学)。此外,还可以根据愈合方法进行分类,无论是自主愈合还是非自主愈合(即有或没有外部刺激)。开发自修复复合材料的一些众所周知的方法是包含微胶囊、中空纤维或含有愈合剂的血管网络(Blaiszik 等人,2008 年)。自修复也可以通过热激活,使用可逆相互作用或溶解的热塑性聚合物。形状记忆效应也已用于展示自修复特性。