请注意,尽管它们仍带有 Zetec 徽标和品牌,但超声波仪器和软件产品由 Eddyfi Technologies 制造,而 Zetec 品牌的 EC 和 SG 产品由 Zetec Inc. 制造。尽管隶属于 Eddyfi Technologies,但 Zetec Inc. 仍然是一家独立管理的公司,因为与美国政府签订了合同,是机密业务的主要供应商。本文件中的信息在发布时准确无误。实际产品可能与此处介绍的不同。© 2025 Eddyfi UK Ltd. Eddyfi Technologies、Eddyfi、Gekko、Mantis 及其相关徽标是 Eddyfi Technologies(Eddyfi NDT, Inc. 的全资子公司)在加拿大和/或其他国家/地区的商标或注册商标。Eddyfi Technologies 保留更改产品供应和规格的权利,恕不另行通知。Eddyfi Technologies 是 Previan 的一个业务部门。
Flore Villaret、Xavier Boulnat、Pascal Aubry、Julien Zollinger、Damien Fabrègue 等人。马氏体钢中 δ 铁素体到奥氏体相变动力学的建模:应用于增材制造中的快速冷却。 Materialia, 2021, 18 (2021) (101157),第18页 (2021)。 “10.1016/j.mtla.2021.101157”。 “cea-03330729”
免责声明 本信息是根据美国政府机构资助的工作编写的。美国政府及其任何机构或其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务并不一定构成或暗示美国政府或其任何机构对其的认可、推荐或支持。本文表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
免责声明 本信息是根据美国政府机构资助的工作编写的。美国政府及其任何机构或其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务并不一定构成或暗示美国政府或其任何机构对其的认可、推荐或支持。本文表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
奥氏体不锈钢 (ASS) 常用于敏感的氢气 (H) 存储、氢气基础设施以及运输应用,因为与铁素体钢相比,它们通常不太容易受到氢脆 (HE) 的影响。这是因为它们的扩散率较低,而氢的溶解度较高 [1-3]。氢脆描述了这样一种现象:材料的机械性能经常会突然发生灾难性的恶化(特别是在受到拉伸载荷时,由于拉伸延展性的丧失),这是由于酸性溶液中的环境氢和含氢气体 [4-8] 扩散到块体材料中造成的。与不易发生 HE 的热力学稳定 ASS(如 AISI 310S 型)相比,在仅含 8 – 10 wt% Ni 的亚稳态 ASS(如 AISI 304 型)中经常观察到严重的 HE,其中在变形过程中会形成应变诱导的 α ′马氏体 [9 – 11]。应变诱导的 α ′马氏体为 H 提供了快速扩散路径,导致 H 在微观结构的关键位置富集(如异质界面前方的微观机械高应力区域),从而导致 H 辅助开裂 [12, 13]。此外,由于凝固过程中的偏析或高冷却速度导致 δ 到 γ 的转变不完全,亚稳态 ASS 中可能会出现少量的 δ 铁素体。这可能会通过提供裂纹起始点来增加样品的 HE 敏感性 [14, 15]。
摘要:本研究旨在评估由电弧添加剂制造(WAAM)工艺产生的添加性化奥氏体不锈钢的应力腐蚀行为。通过电化学分析在腐蚀性环境中,通过电化学分析和缓慢的应变速率测试(SSRT),通过电化学分析来研究这一点。使用光学和扫描电子显微镜以及X射线衍射分析进行了微观结构评估。所获得的结果表明,尽管添加性生产的奥氏体不锈钢及其对应物合金之间的微观结构和机械性能存在固有的差异,但它们的电化学性能和应力腐蚀性易感性相似。添加性合金中的腐蚀攻击主要集中在奥氏体基质与二级铁素体相之间的界面上。在与单个奥氏体相具有单个奥氏体相的对手锻造合金的情况下,腐蚀攻击是由均匀的斑点均匀散布在外表面的。两种合金在腐蚀性环境中SSRT实验中的“帽和锥体”骨折的形式显示出延性衰竭。
摘要 提高汽车燃油经济性标准要求开发具有优异机械性能且经济可行的钢板。淬火和分配 (Q&P) 热处理旨在产生富碳的亚稳态奥氏体,该奥氏体在变形过程中转变为马氏体,从而提高强度和延展性。在工业成型操作中,变形温度往往与环境条件不同,应变速率往往超过准静态速率 (>0.001 s -1 )。在本研究中,在 0.0001 至 0.1 s -1 的应变速率下对强度为 980 和 1180 MPa 的 Q&P 钢进行拉伸试验,同时使用热电偶和热成像评估绝热加热。扫描电子显微镜断口分析用于识别延性失效的机制,并用 x 射线衍射测量残余奥氏体以评估奥氏体转变的程度。
奥氏体不锈钢的低温渗碳/氮化 – 合金成分对微观结构和性能的影响 Giulio Maistro 工业与材料科学系 查尔姆斯理工大学 摘要 奥氏体不锈钢是食品、制药、化学、石油和天然气工业等重视耐腐蚀性的应用中最常用的材料之一。然而,低硬度和差的摩擦学性能往往是其应用的障碍。传统表面硬化技术,如高温渗碳(T > 850°C)和氮化(T > 550°C)不适用于这些合金。在这种情况下,富铬碳化物/氮化物在晶界处的快速沉淀会导致合金中的铬消耗并损害耐腐蚀性。自 80 年代中期以来,已经开发出用于奥氏体不锈钢表面硬化的低温热化学处理,包括气体渗碳和等离子氮化。这些过程可以诱导形成无沉淀间隙过饱和亚稳态扩展奥氏体(也称为 S 相),具有优异的硬度和改善的耐磨性,同时保持耐腐蚀性。