AmélieSchultheiss,Abderrahime Sekkat,Viet Huong Nguyen,Alexandre Carella,Anass Benayad等。通过空间原子层沉积,高性能封装透明导电聚合物。合成金属,2022,284,pp.116995。10.1016/j.synthmet.2021.116995。hal-03636177
研究了在100 mm硅基底上采用等离子体增强原子层沉积技术制备氮化铌薄膜,并研究了薄膜性质的异质性。直径为92mm时表面电阻分布的不均匀性为7%。使用X射线反射法测量板的中心部分和距离中心40毫米的四个位置的膜厚度分布的不均匀性为4%。在基板上的相同位置进行的 X 射线衍射没有显示反射有任何可见的变化。不同区域的晶格参数差异仅为0.06%。超导测量表明,在直径为80毫米时,超导转变温度的最大偏差为1.6%,临界电流密度的最大偏差为7%。
图 1. 从四种不同样品中以不同摩尔比沉积的 Al x Ti 1-x N 膜获得的窄范围核心级光电子谱 a) Al 2p b) Ti 2p c) N 1s 和 d) O 1s。大多数样品中的碳贡献几乎低于检测限,因此省略了 C 1s 光谱。
摘要 :改进的露天空间原子层沉积 (SALD) 头用于在各种基底上制造复杂氧化物图案。共反应物保持在周围大气中,设计了一个由三个同心喷嘴和一个前体出口组成的简单注入头。可以轻松且可逆地修改金属前体出口的直径,从而可以直接形成具有不同横向尺寸的图案。成功证明了无掩模沉积均匀和同质的 TiO 2 和 ZrO 2 薄膜,横向分辨率从毫米到几百微米范围可调,同时将膜厚度保持在几纳米到几百纳米范围内,并在纳米级控制。这种局部 SALD 方法称为 LOCALD,还可以在结构化基底上进行层堆叠和沉积。
图 2:Cu(111) 上的电压脉冲。a) 3 . 5 × 3 . 5 nm 2 STM 初始状态的形貌图像,其中暗(HS)邻居(V = 0 . 3 V,I = 5 pA)和 b) 4 . 8 × 4 . 8 nm 2 STM 初始状态的形貌图像,其中亮(LS)邻居(V = 0 . 3 V,I = 5 pA)。黑点表示两种环境中电压脉冲的位置。c)、d) 分别在暗(HS)和亮(LS)邻居的 0.5 V 电压脉冲期间记录的典型 I(t) 轨迹。e)、f) 分别在暗(HS)和亮(LS)邻居的 I(t) 轨迹的每个平台的电流乘以持续时间(I×∆t)的分布。红色圆圈(蓝色方块)对应于从亮(LS)到暗(HS)(暗(HS)到亮(LS))分子的实验事件分布。虚线对应于每个分布的单指数拟合。g)、h) 两种环境下 LS 和 HS 状态在 0.5 V 时的相对势能示意图。
。CC-BY-NC 4.0 国际许可(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者此版本于 2025 年 1 月 24 日发布。;https://doi.org/10.1101/2025.01.21.633868 doi:bioRxiv 预印本
摘要:我们提出了一种自下而上的成功方法,设计了一种通用的等离子体增强原子层沉积 (PEALD) 超循环配方,以在 150°C 的相对低温下生长具有可调成分的高质量铟镓锌氧化物 (IGZO) 薄膜。原位实时椭圆偏振表征与非原位互补技术相结合,已用于优化薄膜的沉积工艺和质量,方法是识别和解决生长挑战,例如氧化程度、成核延迟或元素组成。开发的超循环方法通过调整超循环过程中的子循环比,可以轻松控制目标成分。与其他产生非晶态薄膜的低温沉积技术相比,我们在 150°C 下的 PEALD-IGZO 工艺可产生近乎非晶态的纳米晶态薄膜。通过超循环 PEALD 方法在低温下制备 IGZO 薄膜可以控制厚度、成分和电性能,同时防止热诱导偏析。关键词:IGZO、PEALD、超循环、XPS 深度剖析、电流密度
氮化铝 (AlN) 具有宽带隙 (6.2 eV)、高介电常数 (k B 9)、高电阻率 (r B 10 11 –10 13 O cm) 和高热导率 (2.85 W K 1 cm 1 )1 等特性,是微电子和光电子领域的重要材料。由于 AlN 具有压电特性,因此也可用于微机电系统 (MEMS 设备)。2 非晶态 AlN 有多种用途,例如用作钝化层和介电层。3 AlN 薄膜通常通过反应溅射、4 化学气相沉积 (CVD)、5 反应分子束外延 (MBE) 6 和原子层沉积 (ALD) 沉积。AlN 的 ALD 在需要坚固保护层的应用方面引起了广泛关注,例如开发耐腐蚀、绝缘和保护涂层。7
热电技术近年来由于对可持续能源和有效的冷却系统的需求不断增长,因此目睹了近年来的复兴。最近,使用无毒的,丰富的材料(包括P型MGAGSB和N -Type Mg 3(SB,BI)2标志着显着突破的无毒热模块。尽管表现有希望,但关于长期鲁棒性和稳定性的问题仍然存在,尤其是在恶劣的环境中。在这项研究中,对热电模块进行了彻底的探索,重点是在各种条件下的性能降解。通过元素映射分析,在氩气环境中循环过程中的模块中鉴定了降解机制,在氩环境中,原子迁移和在接触区域的复杂氧化物形成是关键因素。此外,空气中的骑自行车测试揭示了显着的降解,从而促进了保护策略的探索。使用原子层沉积(ALD)出现的表面涂层作为一种有希望的解决方案,尤其是HFO 2,表现出了出色的保护作用。此外,还发现了重新销售的恢复模块性能,强调了开发高级焊接技术以推广基于镁的热电技术的重要性,作为BI 2 TE 3的可持续替代方案。这些发现强调了探索新型接触材料的重要性,并证明了ALD作为增强模块可靠性和鲁棒性的普遍方法的潜力。
简介。新型的光子量子技术依赖于非经典光的集成来源,从而产生了从单光子到明亮场的纠缠状态的范围。光学参数振荡器(OPO)被广泛用于此目的。纳米光子学的发展将这些设备带入了微观领域[1]。如今,它们代表了纠缠光子的可靠来源[2],是实现综合信息信息协议的基础[3]。在连续变量域中,实现了几个重要的里程碑,例如使用第二(χ(2))[4,5]和三阶(χ(3))非线性[6-11]的片上光学挤压。尤其是硅光子学引起了人们的极大兴趣,因为它们与CMOS(互补的金属 - 氧化物 - 氧化型)制造过程的兼容性,从而使光子和微电源在同一芯片中无缝整合。由其成熟的制造业杠杆作用,低损失波导是局部制造的,导致超高质量因子光学微型洞穴[12]。在这里,我们首次介绍了在片上OPO中产生的完整高斯州的完整量子断层扫描。是针对这些系统中纠缠的观察,在参考文献中进行了理论预测。[13,14],我们使用谐振辅助