摘要 量子计算最有前途的应用之一是处理图像等图形数据。在这里,我们研究了基于交换测试实现量子模式识别协议的可能性,并使用 IBMQ 噪声中型量子 (NISQ) 设备来验证这个想法。我们发现,使用双量子比特协议,交换测试可以有效地以良好的保真度检测两个模式之间的相似性,尽管对于三个或更多量子比特,真实设备中的噪声会变得有害。为了减轻这种噪声影响,我们采用破坏性交换测试,这显示出三量子比特状态的性能有所提高。由于云对较大 IBMQ 处理器的访问有限,我们采用分段方法将破坏性交换测试应用于高维图像。在这种情况下,我们定义了一个平均重叠度量,当在真实 IBMQ 处理器上运行时,它可以忠实地区分两个非常不同或非常相似的模式。作为测试图像,我们使用具有简单模式的二进制图像、灰度 MNIST 数字和时尚 MNIST 图像,以及从磁共振成像 (MRI) 获得的人体血管的二进制图像。我们还介绍了一种利用金刚石中的氮空位 (NV) 中心进行破坏性交换测试的实验装置。我们的实验数据显示单量子比特状态具有高保真度。最后,我们提出了一种受量子联想记忆启发的协议,其工作方式类似于监督学习,使用破坏性交换测试进行量子模式识别。
摘要 我们最近证明,纤维素分解产物纤维三糖是一种损伤相关分子模式 (DAMP),可诱导与细胞壁完整性相关的反应。下游反应的激活需要拟南芥马来酸二酯结构域内含有的纤维寡聚体受体激酶 1 (CORK1) 1。纤维三糖/CORK1 通路可诱导免疫反应,包括 NADPH 氧化酶介导的活性氧产生、丝裂原活化蛋白激酶 3/6 磷酸化依赖性防御基因激活以及防御激素的生物合成。然而,细胞壁分解产物的质外体积累也应激活细胞壁修复机制。我们证明,在将纤维三糖施用于拟南芥根部后数分钟内,参与活性纤维素合酶复合物在质膜中积累以及负责蛋白质运输到反式高尔基网络 (TGN) 和在反式高尔基网络内运输的多种蛋白质的磷酸化模式就会发生改变。参与半纤维素或果胶生物合成的酶的磷酸化模式和多糖合成酶的转录水平几乎不受纤维三糖处理的影响。我们的数据显示,参与纤维素生物合成和反式高尔基体运输的蛋白质的磷酸化模式是纤维三糖/CORK1 通路的早期靶标。
[1] H. Ramp,T。J. Clark,B。D. Hauer,C。Doolin,K。C. Balram,K。Srinivasan和J. P. Davis,《从3D微波炉从3D微波腔到电信的波长转导,使用Piezoeleelectric oporyicalical Crystals,应用物理学Letters Letters Letters Letters 116,(202020202020)。[2] M. Schatzl, F. Hackl, M. Glaser, P. Rauter, M. Brehm, L. Spindlberger, A. Simbula, M. Galli, T. Fromherz, and F. Schäffler, Enhanced Telecom Emission from Single Group- IV Quantum Dots by Precise CMOS-Compatible Positioning in Photonic Crystal Cavities , ACS Photonics 4 , 665 (2017).[3] J. Morville,S。Kassi,M。Chenevier和D. Romanini,快速,低噪声,模式,逐示,通过二极管激光自锁定的自锁,应用物理学B:激光器和光学80、1027(2005)。[4] O. Painter,R。K. Lee,A。Scherer,A。Yariv,J。D. O'Brien,P。D. Dapkus和I. Kim,二维光子波段缺陷模式激光,科学284,1819(1999)。[5]
然而,在光电设备中,PB对应物的高性能,最近的努力,尤其是在CS 2 Agbibr 6双PSK上,[2]证明了它们在太阳能电池的广泛应用中的强大用途,[3-9] [3-9]光探测器,[10,11] x射线检测器,[10,11] X射线检测器[12] memristors [13] Memristors [13] 13]。[14] Moreover, when passing from the 3D double PSK toward its layered counterparts with two (2L) or one (1L) octahedra layers by introducing large A-site organic cations, such as butylam- monium (BA) or propylammonium (PA), allowed to develop new two-dimensional (2D) materials with tunable optoelec- tronic properties, such as the character of the bandgap as well as带隙的能量从≈2eV到≈3eV,这与无机晶格的失真有关。[15–19]尺寸还原也明显提高了候选人的ON/OFF比率,从10 2(CS 2 Ag-Birb 6至3d)到10 7(((Ba)2 Csagbibr 7),因为在扭曲的晶体结构中,离子迁移受到离子迁移的青睐。[20]从(Ba)2 Csagbibr 7中获得了具有较大迁移率的产物的X射线光绘制器,其中敏感性取决于晶体的尺寸(八面体层的数量)。[21,22]光电探测器的时间响应可以通过尺寸减小来增强,同时保持相似的检测率; [23]
4a-d) 和净通量的符号 (图 4e-f) 显示了热通量的正相关系数。对于整个对流层的感热输送 (图 4a 和 e),由于西半球的平均热流入比东半球的热流出强,热输送主要导向北极。图 4a 中使用的未平滑时间序列的相关系数为 - 99.68%,图 4a 中显示的平滑时间序列的相关系数为 - 99.56%。对于对流层下部的感热输送 (图 4c 和 e),由于东半球的平均热流入比西半球的热流出弱,热输送主要导向远离北极。因此,在对流层下部,半球的热通量方向发生了翻转。图 4a 中使用的未平滑时间序列的相关系数为 - 99.68%,图 4a 中显示的平滑时间序列的相关系数为 - 99.56%。
然而,HL-LHC 的覆盖范围依赖于比 LHC 高一个数量级的亮度,这意味着每次光束碰撞时发生的额外质子-质子相互作用的数量(也称为堆积,μ)将增加 3 到 5 倍,达到每次碰撞 140 到 200 次额外的相互作用。因此,HL-LHC 的计算环境将极具挑战性,目前的预测表明,处理数据所需的计算资源将超过预算预测。用于重建带电粒子轨迹的模式识别算法是重建模拟数据和碰撞数据事件的关键挑战。模式识别算法 [5] 可大致分为全局方法或局部方法。全局模式识别方法通过同时处理来自全探测器的所有测量值来寻找轨迹。全局方法的例子包括保角映射或变换方法,如霍夫变换 [6、7] 和神经网络 [8]。局部模式识别方法根据探测器局部区域的测量结果生成轨迹种子,然后搜索其他命中点以完成轨迹候选。局部方法的示例包括轨迹道路和轨迹跟踪方法,例如卡尔曼滤波器 [9-11]。模式识别算法通常在找到种子之后的轨迹重建序列中运行。一旦通过模式识别算法识别出沉积的能量集,就可以通过拟合算法确定轨迹的参数。用于描述轨迹的参数取决于探测器的几何形状,但通常使用五个(如果包含时间信息,则为六个)参数。轨迹参数通常包括动量(与曲率成反比)、描述传播方向的角度以及用于表征起点的撞击参数。为了说明 HL-LHC 所带来的挑战,图 1 显示了每个事件的处理时间与堆积的关系,该图使用了 ATLAS 实验使用基于卡尔曼滤波器的模式识别序列记录的数据。处理时间与 μ 的增加成比例,这是模式识别算法的典型特征。在 HL-LHC 中,μ 的预期值将明显位于曲线的右侧,因此需要大量的 CPU 资源。未来的强子对撞机(例如未来环形对撞机项目中提出的强子-强子对撞机 [ 13 ]),预计会出现更多的堆积,每个事件可能最多增加 1000 次相互作用。由于这一挑战,开发用于高能物理模式识别的新算法和新技术目前是一个非常活跃的发展领域。本文概述了正在进行的研究,以确定量子计算机在未来如何用于模式识别算法。量子计算机最早是在 40 多年前提出的 [14-16],最初的想法是开发一种利用自然界中的量子过程来更好地模拟自然的计算机。十年后,量子算法的发展引起了人们的进一步兴趣,这些算法展示了量子计算机解决经典难题的潜力,包括质数分解 [17] 和搜索算法 [18,19]。第一台量子计算机基于现有的核磁共振技术 [20-22]。最近,我们进入了所谓的噪声中型量子 (NISQ) 时代 [23],量子计算机具有数十个逻辑量子位,可以超越当前经典计算机的能力,尽管受到显著噪声的限制。量子位是经典计算机上用于存储信息的比特的量子类似物。目前可用的量子计算机可分为量子退火器或基于电路的量子计算机。量子退火器旨在解决特定类型的问题:最小化目标函数,由于量子隧穿效应,量子退火有望更快地解决最小化问题。D-Wave 生产目前最多 5000 个量子比特的商用量子退火器 [ 24 ]。基于电路的量子计算机可用于解决更广泛的问题,因此在概念上与当今的数字计算机更相似。它们由使用各种技术由量子比特制成的量子电路组成。目前正在探索的量子比特技术包括超导晶体管、离子阱和拓扑量子比特。例如,IBM量子退火器旨在解决特定类型的问题:最小化目标函数,由于量子隧穿效应,量子退火有望更快地解决最小化问题。D-Wave 生产商用量子退火器,目前最多有 5000 个量子比特 [ 24 ]。基于电路的量子计算机可用于解决更广泛的问题,因此在概念上与当今的数字计算机更相似。它们由使用各种技术由量子比特制成的量子电路组成。目前正在探索的量子比特技术包括超导晶体管、离子阱和拓扑量子比特。例如,IBM量子退火器旨在解决特定类型的问题:最小化目标函数,由于量子隧穿效应,量子退火有望更快地解决最小化问题。D-Wave 生产商用量子退火器,目前最多有 5000 个量子比特 [ 24 ]。基于电路的量子计算机可用于解决更广泛的问题,因此在概念上与当今的数字计算机更相似。它们由使用各种技术由量子比特制成的量子电路组成。目前正在探索的量子比特技术包括超导晶体管、离子阱和拓扑量子比特。例如,IBM
核融合设备旨在通过将等离子体加热到非常高的温度,通常是在数十千分kev的范围内实现点火。这些温度下的热量损失是融合效率效率的重要来源。但是,融合横截面仅取决于燃料离子的温度。同时,通过辐射或热传输会导致热电子损失,但不会产生融合功率。此外,磁性配置设备对捕获血浆的容量通常受到总等离子体的限制。因此,高温电子占据了该压力极限的很大份额,而无需产生任何额外的融合能力。因此,可以通过实现“热离子模式”来改善融合装置的性能,在该模式下,在该模式下,离子在高温下比电子高[1,2]。但是,获得热离子模式是一个重要的技术挑战。融合产生的高能离子优先碰撞地损失了它们的能量,而不是燃料离子。如果没有采取任何其他策略来加热离子种群,则电子将至少与燃料离子一样热,即使不是热。如果外部加热源针对离子种群,则可以产生热模式。这些来源可能是中性梁或RF波。在所有这些情况下,热离子模式需要明显的干预才能改变功率平衡,以便将能量引向燃料离子。本文将提出另一种可能性:a在反应器中达到热模式,但是,主要的加热必然是通过融合反应,需要某种形式的α通道,其中融合副产物的能量被引导到波浪中(避免对电子的碰撞加热),并将其引入其燃料中的燃料中的燃料中的燃料[3-111]。在任何这些情况下,如果降低电子能量的能量,则可以增加温度的差异,尽管此策略涉及增加能量损失的范围而言不太可取。
玻色子模式在各种量子技术中有着广泛的应用,例如用于量子通信的光子、用于量子信息存储的自旋系综中的磁振子和用于可逆微波到光量子转导的机械模式。人们对利用玻色子模式进行量子信息处理的兴趣日益浓厚,其中电路量子电动力学(电路 QED)是其中的主要架构之一。量子信息可以编码到具有长相干时间的玻色子超导腔模式的子空间中。然而,标准的高斯运算(例如,光束分裂和双模压缩)不足以实现通用量子计算。主要的挑战是在高斯运算之外引入额外的非线性控制,而不会增加显著的玻色子损失或退相干。在这里,我们回顾了超导电路单个玻色子码通用控制的最新进展,包括幺正控制、量子反馈控制、驱动耗散控制和完整耗散控制。还讨论了纠缠不同玻色子模式的各种方法。2021 中国科学出版社。由 Elsevier BV 和中国科学出版社出版。保留所有权利。
(2013)。 22. A. Zubarev,D. Dragoman,应用。物理。 Lett.104,183110(2014)。 23. A. Zubarev,D. Dragoman,J. Phys. D 47,425302(2014年)。 24. A. Zubarev,国际半导体会议(CAS)文集,109,罗马尼亚锡纳亚(2014 年)。 25. GJ Milburn、S.Schneider、DFV James、Fortschr。物理学 48, 801 (2000)。 26. UL Andersen, G. Leuchs, C. Silberhorn, 激光光子学评论4, 337 (2010)。 27. A. Zubarev、M. Cuzminschi、A. Isar,罗马学院院刊。第20、251页(2019年)。 28. A. Croitoru,I. Ghiu,A. Isar,Rom. Rep. Phys. 72,102 (2020年)。 29. M. Calamanciuc,A. Isar,Rom. J. Phys. 65,119 (2020年)。 30.X.-B. Wang,T. Hiroshima,A. Tomita,M. Hayashi,Phys.报告448,1(2007)。 31. V. H¨andchen、T. Eberle、S. Steinlechner、A. Samblowski、T. Franz、RF Werner 和 R. Schnabel, Nat.
我们通过分析和数值方法研究了离子量子计算机中声子模式的特性。离子链被放置在一个谐振阱中,并带有一个额外的周期势,其无量纲振幅 K 决定了可用于量子计算的三个主要相位:在零 K 时,我们有 Cirac-Zoller 量子计算机的情况,在某个临界振幅 K < K c 以下,离子处于 Kolmogorov-Arnold-Moser (KAM) 相位,具有非局域声子模式和自由链滑动,在临界振幅 K > K c 以上,离子处于固定的 Aubry 相位,具有有限的频率间隙,保护量子门免受温度和其他外部波动的影响。对于 Aubry 相位,与 Cirac-Zoller 和 KAM 相位相反,声子间隙与放置在陷阱中的离子数量无关,从而保持陷阱中心周围的固定离子密度。我们表明,与 Cirac-Zoller 和 KAM 的情况相比,Aubry 相中的声子模式的局部化程度要高得多。因此,在 Aubry 相中,反冲脉冲会导致离子的局部振荡,而在其他两个相中,它们会迅速扩散到整个离子链上,使它们对外部波动相当敏感。我们认为,Aubry 相中的局部声子模式和声子间隙的性质为该相中具有大量离子的离子量子计算提供了优势。
