摘要 量子网络节点之间的纠缠通常使用中间设备(例如预告站)作为资源产生。当将量子网络扩展到许多节点时,每对节点都需要一个专用的中间设备,这会带来高成本。在这里,我们提出了一种经济高效的架构,通过称为纠缠生成交换机 (EGS) 的中央量子网络集线器连接许多量子网络节点。EGS 通过共享进行纠缠所需的资源,允许以固定的资源成本连接多个量子节点。我们提出了一种称为速率控制协议的算法,它可以调节用户组之间对集线器资源访问权的竞争水平。我们继续证明算法产生的速率的收敛定理。为了推导该算法,我们在网络效用最大化的框架下工作,并利用拉格朗日乘数和拉格朗日对偶理论。我们的 EGS 架构为开发与其他类型的量子网络集线器以及更复杂的系统模型兼容的控制架构奠定了基础。
GRAS转录因子的植物特异性家族已广泛地与调节转录重编程有关,与从植物发育过程到压力反应的生物学功能多样性相关。在硅质O结构和比较分析中支持的GRAS转录因子的功能分析正在出现并阐明与其生物学作用相关的调节网络。在本综述中,对GRAS蛋白结构和生化特征的详细分析表明,这些特征如何影响亚细胞位置,分子机制和功能。与GRAS分类相关的术语分类相关的术语问题,尤其是如何影响生物学功能的假设。洞悉推动该基因家族演变的机制,以及GRA的遗传和表观遗传调节如何提供有助于下功能化。最后,这篇评论辩论挑战和未来的观点,即对这个复杂但有前途的基因家族的应用来改善作物,以应对环境过渡的挑战。
植物特有的 GRAS 转录因子家族广泛参与转录重编程的调控,而转录重编程与从植物发育过程到应激反应等多种生物功能有关。在硅片结构和比较分析的支持下,对 GRAS 转录因子的功能分析正在兴起,并阐明了与其生物学作用相关的调控网络。在这篇综述中,对最近发现的 GRAS 蛋白结构和生化特征进行了详细分析,指出了这些特征可能如何影响亚细胞定位、分子机制和功能。讨论了即使在存在大量基因组资源的情况下,在不同植物物种中将 GRAS 分类为不同亚家族的命名问题,特别是它如何影响生物功能的假设。提供了有关驱动该基因家族进化的机制以及 GRAS 的遗传和表观遗传调控如何促进亚功能化的见解。最后,这篇综述讨论了将这个复杂但有前途的基因家族应用于作物改良以应对环境转变挑战的挑战和未来前景。
- 用例 ID:例如 UC-QN-00X。 - 用例描述:提供简短摘要、用例的总体说明,包括背景、动机、相关技术和目标领域,如果可能的话,最好附上图表。 - 问题陈述:确定与用例相关的问题和/或限制。 - 技术考虑:讨论解决确定的问题和/或限制的各种技术问题和挑战。 注:技术成熟度:评估解决上述技术考虑所需的关键技术解决方案的成熟度,例如技术就绪水平(TRL)等。 - 标准化考虑:确定 QKDN 之外的量子网络的相关标准化项目,包括符合 ITU-T SG13 工作范围的未来标准化建议。 - 其他:1)好处和影响,描述用例将带来的好处,以及应用后将产生的影响。2)应用前景,评估相关应用领域和潜在市场等。
摘要 - 由于量子信息对噪声的敏感性信息如何,量子信息系统的实验实现将很困难。克服这种灵敏度对于设计能够在大距离内可靠地传输量子信息的量子网络至关重要。此外,表征量子网络中通信噪声的能力对于开发能够克服量子网络中噪声影响的网络协议至关重要。在这种情况下,量子网络断层扫描是指通过端到端测量在量子网络中的表征。在这项工作中,我们提出了由由单个非平凡的Pauli操作员进行的量子通道形成的量子星网网络的网络层析成像协议。我们的结果进一步进一步,通过引入分别设计状态分布和测量值的层析成像协议,进一步量子翼型星网络的端到端表征。我们基于先前定义的量子网络层析成像协议,并为恒星中的位叉概率独特表征提供了新的方法。我们基于量子Fisher信息矩阵引入了理论基准,以比较量子网络协议的效率。我们将技术应用于提出的协议,并对量子网络层析成像的纠缠潜在好处进行初步分析。此外,我们使用NetSquid模拟协议,以评估特定参数制度获得的估计量的收敛性。我们的发现表明,协议的效率取决于参数值,并激励搜索自适应量子网络层析成像协议。
摘要 — 量子联邦学习 (QFL) 是一种新颖的框架,它将经典联邦学习 (FL) 的优势与量子技术的计算能力相结合。这包括量子计算和量子机器学习 (QML),使 QFL 能够处理高维复杂数据。QFL 可以部署在经典和量子通信网络上,以便从超越传统 FL 框架的信息理论安全级别中受益。在本文中,我们首次全面调查了 QFL 的挑战和机遇。我们特别研究了 QFL 的关键组件,并确定了在经典和量子网络上部署 QFL 时出现的独特挑战。然后,我们开发了新颖的解决方案并阐明了有希望的研究方向,以帮助解决已发现的挑战。我们还提供了可行的建议,以推进 QFL 的实际实现。
具有对其配置进行相干控制的量子设备网络在量子信息处理(包括量子通信、计算和传感)方面具有巨大的优势。到目前为止,对这些优势的研究都假设控制系统最初与网络处理的数据不相关。在这里,我们探索了数据和控制之间量子关联的威力,展示了两个通信任务,当且仅当发送方与控制网络配置的第三方(“控制器”)共享先前的纠缠时,才可以通过信息擦除通道完成这两个通信任务。第一个任务是传输经典消息而不向控制器泄露信息。第二个任务是与接收器建立二分纠缠,或者更一般地说,与多个空间分离的接收器建立多分纠缠。
摘要 — 量子网络是在物理上分离的量子处理器之间传输以量子比特或量子位编码的信息的手段。鉴于量子位的不稳定性,这种网络的设计具有挑战性,需要在可靠性和效率之间取得谨慎的平衡。通常,量子网络分为两类:利用量子纠缠进行量子隐形传态的网络和直接传输量子信息的网络。在本文中,我们介绍了 SurfaceNet,这是第二类量子网络,它使用表面代码作为逻辑量子位来保存和传输信息。我们使用表面代码的方法可以容错地纠正网络内的操作和光子丢失错误。我们提出了一种新颖的单向量子通信程序,旨在更好地将表面代码集成到我们的网络架构中。我们还提出了一种高效的路由协议,可以优化通信过程的资源利用率。模拟结果表明,SurfaceNet 显著提高了整体通信保真度。
在各方之间共享多方量子纠缠可以执行各种安全通信任务。其中,会议密钥协商(CKA) - 密钥分发到多方的扩展 - 最近受到了广泛关注。有趣的是,CKA 还可以以保护参与方身份的方式执行,从而提供匿名性。在这项工作中,我们提出了一种在高度实用的网络环境中实现的三方匿名 CKA 协议。具体而言,使用一排量子节点在所有节点之间构建线性簇状态,然后使用该状态在任意三个节点之间匿名建立密钥。节点只需与邻居共享最大纠缠对,因此避免了中央服务器共享纠缠态的必要性。这种线性链设置使我们的协议成为未来量子网络实现的绝佳候选。我们明确证明我们的协议可以保护参与者的身份不受彼此影响,并对有限范围内的密钥速率进行分析,有助于寻找超越点对点的网络架构的可行量子通信任务。
摘要 量子网络通过执行纠缠分布促进了许多应用,包括安全通信和分布式量子计算。对于某些多用户量子应用程序,需要访问共享的多部分状态。我们考虑设计以更快的速率分发此类状态的协议的问题。为此,我们提出了三种利用多路径路由来提高多用户应用程序分发速率的协议。这些协议在具有 NISQ 约束的量子网络上进行评估,包括有限的量子存储器和概率纠缠生成。模拟结果表明,与单路径路由技术相比,开发的协议实现了多部分状态分发速率的指数级增长,在研究的案例中最大增长了四个数量级。此外,对于较大的用户集,分发速率的相对增加也被发现有所改善。当在缩小的真实世界拓扑中测试协议时,发现拓扑对协议实现的多部分状态分发速率有显著影响。最后,我们发现多路径路由的好处在较短的量子存储器退相干时间和中间的纠缠生成概率值时最大。因此,所开发的协议可以有益于 NISQ 量子网络控制和设计。