Johanna 获得了巴西圣保罗大学电气工程 - 微电子学硕士和博士学位。她曾担任南布列塔尼大学(法国)、法国国家信息与自动化研究所(法国)和慕尼黑工业大学(德国)安全和新兴技术领域的高级研究员。目前,她担任空客量子安全技术专家,并担任欧洲量子通信基础设施 (EuroQCI) 等不同欧洲量子计划的首席工程师。她还是欧盟委员会量子技术战略咨询委员会成员和量子产业联盟 (QuIC) 战略产业路线图的负责人。她在安全、网络系统、高性能计算和量子技术领域的研发方面拥有超过 15 年的经验。
• 量子比特,量子位:数字位的模拟,用原子、光子、离子、电子、超导电路等的状态(例如自旋、极化、位置等)表示的信息单位,可以同时表示多个值,通常被描述为双态系统(例如,可以是 1 和 )而不是二进制数字的 1 或 0) • 转导:- 域之间量子态的高保真传输,例如,在不同模态、媒体频率、功能设备之间转换量子信号 • 量子隐形传态:将量子信息从一个地方传输到另一个地方(“飞行量子比特”的路径) • 相干性/退相干性:量子态极其脆弱,在保持高保真状态的同时进行通信具有挑战性
摘要当代交流既需要内容供应,又需要数字信息基础架构。现代错误信息的运动尤其取决于跟踪和针对同情受众的后端基础架构,并产生可以维持竞选活动的收入,如果不启动竞选活动。然而,对错误信息的政治经济学知之甚少,尤其是那些有关公共卫生指南和疫苗接种计划传播误导或有害内容的运动。为了了解健康错误信息的政治经济学,我们分析了参与传达有关疫苗接种计划错误信息的59个小组的内容和基础设施网络。凭借独特的跟踪器和通信基础设施数据集,我们演示了错误信息的政治经济学如何取决于平台货币化基础设施。我们提供了一种传播资源动员理论,可以提高对交流环境,组织互动和错误信息生产的政治成果的理解。关键字:混合媒体,疫苗,COVID-19,错误信息,通信资源动员
摘要:计算机网络由数百万个节点组成,由于这些节点持续受到攻击,因此需要持续保护。如果量子计算机普及,保护此类网络的传统安全方法将不够有效。另一方面,我们可以利用量子计算和通信的能力来构建新的量子通信网络。在本文中,我们专注于提高经典客户端-服务器互联网应用程序的性能。为此,我们引入了一种新型物联网 (IoT) 量子网络,与传统物联网网络相比,它提供了更高的安全性和服务质量 (QoS)。这可以通过向传统物联网网络添加量子组件来实现。使用量子对应节点、通道和服务器。为了在量子节点和量子服务器之间建立安全通信,我们为建议的物联网量子网络定义了一个新的通信程序 (CP)。目前可用的量子计算机的量子比特大小较小(从 50 到 433 个量子比特)。拟议的物联网量子网络使我们能够通过连接多个量子节点(量子处理器)的计算工作来克服这个问题。
涉及多级纠缠的量子网络允许在量子通信,量子传感和分布式量子计算中进行令人兴奋的应用。通过光通道非本地纠缠产生的效率随着网络节点之间的距离而呈指数下降。我们提出了一种平行且预示的协议,用于在多个节点上生成分布式多Qualbit纠缠。这是通过使用高维单光子来实现的,该光子用作连接所有固定量子位(即硅胶合电子旋转)的普通数据总线,每个量子都与单面光腔耦合。平行的多等级纠缠状态与单个光子与每个固定值相互作用并通过每个光子调制电路的检测预示着它。此并行协议可以显着提高分布式纠缠生成的效率,并为分布式多端量子网络提供可行的途径。
摘要 — 端节点之间的高效信息路由是安全量子网络和量子密钥共享的关键推动因素,这依赖于随时间推移创建和维持纠缠态。然而,这种成对纠缠会由于通道损耗和网络节点上纠缠光子的存储而退化。纠缠态反过来会影响保真度,保真度是量化一对量子态相似程度的指标。在本文中,我们提出了一种路由解决方案,该解决方案可满足接收器对从多个发射器节点接收的量子信息施加的阈值保真度要求。我们的解决方案从网络内的此类节点池中选择中间中继器,以最大化量子信息传输的总速率。为此,我们首先提供相邻节点之间保真度损失以及端到端量子数据速率的表达式。然后,我们提出了一种新颖的两阶段路由解决方案,该解决方案(i)使用保真度作为成本度量来确定每个发射器的 k 条最短路径,以及(ii)(启发式地)根据中继器节点是否具有单个或多个可用内存单元为每个发射器分配一条路径。模拟结果表明,我们提出的基于保真度的路由解决方案满足广泛的保真度要求 [0.6-0.79],同时最大化量子信息传输速率,优于现有的基于距离和跳跃的路由方法。索引术语 — 量子网络、量子中继器、量子路由、量子通信、纠缠
在过去十年中,图形处理单元 (GPU) 的进步推动了人工智能 (AI)、高性能计算 (HPC) 和数据分析领域的重大发展。要在这些领域中的任何一个领域继续保持这一趋势,就需要能够不断扩展 GPU 性能。直到最近,GPU 性能一直是通过跨代增加流式多处理器 (SM) 的数量来扩展的。这是通过利用摩尔定律并在最先进的芯片技术节点中使用尽可能多的晶体管数量来实现的。不幸的是,晶体管的缩放速度正在放缓,并可能最终停止。此外,随着现代 GPU 接近光罩极限(约 800 平方毫米),制造问题进一步限制了最大芯片尺寸。而且,非常大的芯片会导致产量问题,使大型单片 GPU 的成本达到不理想的水平。GPU 性能扩展的解决方案是将多个物理 GPU 连接在一起,同时向软件提供单个逻辑 GPU 的抽象。一种方法是在印刷电路板 (PCB) 上连接多个 GPU。由于提供的 GPU 间带宽有限,在这些多 GPU 系统上扩展 GPU 工作负载非常困难。封装内互连(例如通过中介层技术)比封装外互连提供更高的带宽和更低的延迟,为将 GPU 性能扩展到少数 GPU 提供了一个有希望的方向 [1]。晶圆级集成更进一步,通过将预制芯片粘合在硅晶圆上,为具有数十个 GPU 的晶圆级 GPU 提供了途径 [2]。不幸的是,使用电互连在长距离上以低功耗提供高带宽密度从根本上具有挑战性,从而限制了使用电中介层技术进行 GPU 扩展。在本文中,我们提出了光子晶圆网络 (NoW) GPU 架构,其中预先制造和预先测试的 GPU 芯片和内存芯片安装在晶圆级中介层上,该中介层通过光子网络层连接 GPU 芯片,同时将每个 GPU 芯片与其本地内存堆栈电连接,如图 1 所示。光子-NoW GPU 架构的关键优势在于能够在相对较长的晶圆级距离(高达数十厘米)内以低功耗实现高带宽密度。本文的目标是展示光子-NoW 的愿景
洪丹妮是厦门大学生命科学学院的博士生。林红丽是厦门大学生命科学学院的研究生。刘丽芳是厦门大学生命科学学院的研究生。舒木雅是中国科学院遗传与发育生物学研究所的博士后研究员。戴建武是中国科学院遗传与发育生物学研究所的教授。卢发龙是中国科学院遗传与发育生物学研究所的教授。佟梦莎是厦门大学生命科学学院的助理教授。黄嘉良是厦门大学生命科学学院的教授。收稿日期:2022 年 8 月 17 日。修订日期:2022 年 10 月 21 日。接受日期:2022 年 10 月 24 日 © 作者 2022。牛津大学出版社出版。保留所有权利。如需许可,请发送电子邮件至:journals.permissions@oup.com
摘要 —量子网络能够实现量子信息的长距离传输,有望在通信、计算、安全和计量等许多领域提供令人兴奋的好处和新的可能性。这些网络依靠远距离节点的量子比特之间的纠缠来传输信息;然而,这些量子链接的创建并不依赖于要传输的信息。研究人员已经探索了连续生成纠缠的方案,其中网络节点可以在接收用户请求之前生成纠缠链接。在本文中,我们提出了一种自适应方案,该方案使用来自先前请求的信息来更好地指导在接收未来请求之前随机生成的量子链接的选择。我们分析了这种方案可能提供好处的参数空间,并观察到在单瓶颈和自治系统网络上,与其他连续方案相比,性能提高了 75%。我们还针对其他参数选择测试了该方案,并观察到高达 95% 的持续好处。我们的自适应方案在随机请求队列上的强大功能在单瓶颈拓扑上得到了展示。我们还探讨了量子内存分配场景,其中延迟性能的差异意味着量子网络资源优化分配的必要性。索引术语 — 量子网络、纠缠生成、量子隐形传态、自适应协议