通过光子交换使具有不同特性的量子系统纠缠是构建未来量子网络的先决条件。证明在不同波长下工作的光的量子存储器之间存在纠缠进一步推动了这一目标的实现。在这里,我们报告了一系列实验,其中铥掺杂晶体用作 794 nm 光子的量子存储器,铒掺杂光纤用作 1535 nm 电信波长光子的量子存储器,以及通过自发参量下转换产生的光子对源。通过对从两个存储器重新发射后的光子进行表征,我们发现非经典相关性,其互相关系数为 g (2) 12 = 53 ± 8;纠缠保持存储的输入输出保真度为 F IO ≈ 93 ± 2%;和非局域性,违反了 Clauser-Horne-Shimony-Holt Bell 不等式,其中 S = 2 . 6 ± 0 . 2。我们的原理验证实验表明,纠缠在通过以不同波长工作的不同固态量子存储器传播时仍然存在。
摘要。一次性存储器 (OTM) 是无意识传输的硬件版本,可用于构建仅靠软件无法实现的对象,例如一次性程序。在这项工作中,我们考虑了对 OTM 的攻击,其中量子对手可以利用其对存储器的物理访问对存储器发起量子“叠加攻击”。此类攻击会显著削弱 OTM。例如,在一次性程序的应用中,似乎这样的对手总是可以通过在输入叠加上运行经典协议来“量子化”经典协议,从而学习协议输出的叠加。也许令人惊讶的是,我们表明这种直觉是错误的:我们从量子可访问的一次性存储器构建一次性程序,其中对手的视图尽管进行了量子查询,但可以通过仅对理想功能进行经典查询来模拟。我们工作的核心是一种使一次性存储器免受叠加攻击的方法。
长寿命多模式量子比特寄存器是模块化量子计算架构的一项使能技术。为了与超导量子比特接口,这样的量子存储器应该能够长时间存储单光子级的传入量子微波场,并按需检索它们。在这里,我们使用类似 Hahn 回声的协议,展示了硅中铋供体自旋集合中一串弱微波场的部分吸收、100 毫秒的存储和检索。通过在时钟跃迁时对铋供体施加偏置,可以获得长存储时间。在存储器中,相位相干性和量子统计得以保留。量子存储器作为一种基于物质的巡回量子比特信息存储介质,已被公认为量子技术中的一个重要组成部分,为量子中继器等应用奠定了基础 [ 1 ]。与传统计算中的存储器类似,量子存储器提供的存储时间与处理量子位的数据寿命相比更长,而且密度更高,例如当使用多模存储器来存储大量状态时。这些属性通常对量子计算架构有益,支持高度模块化的方法。受这种可能性的启发,人们开发了光领域的量子存储器,特别是使用稀土离子掺杂晶体,达到了高效率[2],存储时间在毫秒范围内[3]。适合与超导量子处理器接口的量子存储器必须在微波范围内工作,这需要在稀释制冷机中在毫开尔文温度下工作。具有长存储时间的微波多模量子存储器将成为基于超导量子位的量子计算架构中一个强大且用途广泛的新组件。例如,它可以用于实现运行具有高度内部连接性和内置长期存储器的量子图灵机架构的子处理器[见图 1 ( A ) ] [ 4 ],有助于克服当今超导量子比特处理器的一些局限性 [ 5 – 7 ]。
用于光子量子比特的长持续时间量子存储器是实现长距离量子网络和中继器的重要组成部分。将光学状态映射到稀土集合中的相干自旋波上是一种特别有前途的量子存储方法。然而,由于所需的自旋波操纵引起的读出噪声,在量子水平上实现长时间存储仍然具有挑战性。在这项工作中,我们应用动态解耦技术和小磁场,在 151 Eu 3 +:Y 2 SiO 5 晶体中实现 20、50 和 100 毫秒的六种时间模式的存储,基于原子频率梳存储器,其中每个时间模式平均包含大约一个光子。通过存储两个时间箱量子比特 20 毫秒来验证存储器的量子相干性,平均存储器输出保真度为 F = (85 ± 2)%,每个量子比特的平均光子数为 μ in = 0.92 ± 0.04。量子比特分析是在存储器读出时完成的,使用我们开发的一种复合绝热读出脉冲。
对新型电动激活形状的记忆聚合物复合材料(SMPC)进行了深入研究,用于数字光处理3D打印,由聚(乙二醇)二丙烯酸二丙烯酸/聚(羟基乙基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基)组成。可将光电(Meth)丙烯酸酯系统的组成进行精细调整以量身定制基质的热力学特性,而CNTS对配方的光反应性和流变性能的影响进行了研究,以评估可打印性。电测量结果证实,将CNT掺入聚合物矩阵中可以使电导率产生电导率,因此有可能使用Joule效应远程加热纳米复合材料。鉴于达到的高形状(R F)和形状恢复(R R)比率(RF≈100%,R R> 95%)证实了通过焦耳加热驱动形状存储周期的可行性证明了这类CNT/SMPC的显着电触发响应效应。最后,它显示了如何激活模块化和选择性的电动形状恢复,最终可能会设想远程和选择性控制的智能设备的4D打印。
微型计算机有三种基本类型: 台式系统单元:包含系统的电子元件和选定的辅助存储器。鼠标、键盘、显示器等输入和输出设备位于系统单元外部。它可以水平或垂直放置。垂直单元称为“塔式模型”。 笔记本系统单元:便携且小得多。它们包含电子元件、选定的辅助存储器和输入设备(键盘和指点设备)。显示器位于系统单元外部,通过铰链与其相连。 个人数字助理 (PDA) 系统单元:最小,设计为一只手掌大小。它包含整个计算机系统,包括电子元件、辅助存储器和输入和输出设备
在百亿亿次计算中,大量数据需要实时处理。传统的基于 CMOS 的计算范式遵循读取、计算和写回机制。这种方法在计算和存储数据时会消耗大量电力和时间。原位计算(在内存系统内处理数据)被视为百亿亿次计算的平台。自旋转移力矩垂直磁隧道结 (PMTJ) 是一种非易失性存储设备,具有多种潜在优势(快速读写、高耐久性和 CMOS 兼容性),有望成为下一代内存解决方案。双磁隧道结 (DMTJ) 由两个垂直排列的 PMTJ 组成。在本文中,DMTJ 不仅提供了构建独立和嵌入式 RAM 的可能性,还提供了基于 MTJ 的 VLSI 计算的可能性。介绍了一种支持非易失性逻辑计算范式的基于 DMTJ 的两位存储单元。多级单元支持高速读写两位存储单元和实时计算和存储输入数据的非易失性逻辑门。
软件包:SOP引脚数量:84引脚温度:E = 0 ~+70℃; i = -40 ~+85℃; s = -55 ~+95℃质量:e =样本; B =工业; S =空间堆叠层:5层电源:3.3V速度:35NS