摘要:由于错误和写入过程的不完善,在物理支持中对经典数据的编码可以达到某种程度的精度。此外,由于系统的物理或化学不稳定性,存储数据可能会随着时间的推移而发生一定程度的退化。任何读出策略都应考虑到这种自然的不确定性程度并将其影响降至最低。光学数字存储器就是一个例子,其中信息被编码为一组细胞的两个反射值。使用纠缠的量子读取已被证明可以增强理想光学存储器的读出,其中两个级别是完美表征的。在这项工作中,我们分析了存储器构造不完善的情况,并提出了一种优化的量子传感协议,以在存在不精确写入的情况下最大限度地提高读出精度。所提出的策略在现有技术下是可行的,并且对检测和光学损失具有相对稳健性。除了光学存储器之外,这项工作还对生物系统中的模式识别、分光光度法以及从透射/反射光学测量中提取信息的任何情况都有影响。
存储器是当今电子系统中用于数据存储和处理的关键组件。在传统的计算机架构中,由于存储器之间在操作速度和容量方面的性能差距,逻辑单元和存储器单元在物理上是分开的,从而导致冯·诺依曼计算机的根本限制。此外,随着 CMOS 技术节点的演进,晶体管变得越来越小,以提高操作速度、面积密度和能源效率,同时提供更低的驱动电流。然而,嵌入式闪存和 SRAM 等主流技术正面临着重大的扩展和功耗问题。更密集、更节能的嵌入式存储器将非常可取,特别是对于 14 纳米或更小的先进技术节点。与操纵非磁性半导体中的电荷来处理信息的传统电子设备不同,自旋电子器件基于电子自旋,提供创新的计算解决方案。为了将自旋电子学融入到现有的成熟的半导体技术中,基于自旋的器件一般设计以磁隧道结为核心结构,起到磁随机存取存储器(MRAM)的作用。
对半导体和公司的影响 6 对中国 IC 设计行业的影响 6 高性能计算芯片 6 表 5:对中国和非中国 HPC 芯片的制裁 6 IC 设计人员 6 表 6:制裁对芯片和中国 IC 设计行业的影响 6 对晶圆代工厂和存储器制造商的影响 7 晶圆代工厂和存储器制造商 7 表 7:制裁对晶圆代工厂和存储器制造商的影响 7 技术能力 8 表 8:全球主要晶圆代工厂的技术能力 8 表 9:全球主要 DRAM 制造商的技术能力 8 表 10:全球主要 NAND 闪存制造商的技术能力 8 对设备供应商的影响 9 设备供应商 9 表 11:制裁对半导体设备供应商的影响 9 短期和长期影响 9 表 12:制裁对设备供应商的短期和长期影响 9
高保真量子信息处理需要快速门和长寿命量子存储器的结合。在这项工作中,我们提出了一种混合架构,其中奇偶校验保护的超导量子比特直接耦合到马约拉纳量子比特,后者充当量子存储器的角色。超导量子比特基于 π 周期性约瑟夫森结,该结由栅极可调的半导体导线实现,其中单个库珀对的隧穿受到抑制。其中一根导线还包含四个定义量子比特的马约拉纳零模式。我们证明这可以实现 SWAP 门,从而允许在拓扑和常规量子比特之间传递量子信息。该架构将可以用超导量子比特实现的快速门与拓扑保护的马约拉纳存储器相结合。
C/CF-580 系列 • C/CF-590 系列 • C/CF-680 系列 I!ln 下列内容适用于带存储器的电路:A. 存储器说明:C/CF-585、589、594、685、C-6850、6870、6890、16850、16870、16890 和 CF-689 中提供的一键存储器。M:Memory 键与其他功能键一起使用,以定义两个键序列,该序列设置与存储器寄存器相关的操作模式并终止任何紧接在前的输入。操作 M 键后按 + 会将显示寄存器的内容添加到存储器寄存器,而不会改变显示寄存器的内容。操作 M 键后按 - 会减去显示寄存器的内容,而不会改变显示寄存器的内容。操作 M 键后跟 = 会将内存寄存器的内容传输到显示寄存器中,而不会改变内存寄存器的内容。操作 M 键后跟 C/CE 会清除内存寄存器的内容。操作 M 键后跟 X 键可执行内存显示交换功能。内存寄存器的内容被带出到显示寄存器,显示寄存器的内容被写入内存寄存器,替换内存寄存器的先前内容。操作 M 键后跟除 +、-、X、= 或 C/CE 以外的任何键将重置 M 条件并对后续输入进行操作,就像未输入 M 一样。
为了降低数据写入的能量消耗,迫切需要开发新型存储材料。为了开发用于非挥发性存储器(如存储级存储器)的具有极低操作能量的新型相变材料 (PCM),我们通过数值模拟对 PCM 的物理特性进行了贝叶斯优化。在该数值模拟中,同时求解了电势和温度分布。研究发现,具有低热导率、低熔化温度以及低接触电阻与体积电阻之比的 PCM 会导致基于 PCM 的存储器应用的操作能量较低。最后,我们开发了 PCM 的设计策略。应通过降低操作能量 E 来开发新型 PCM,描述为 E = j (1 + C ) DT / D z ,其中 j 是 PCM 的热导率,DT 是熔化温度,C 是接触电阻与体积电阻之比,D z 是 PCM 的厚度。本研究结果阐明了热性能和电性能之间的关系,从而降低了以前研究中隐藏的操作能量。根据设计策略,与传统的 Ge-Sb-Te 化合物相比,相变存储器应用中的操作能量可以降低到 1/100 以下。2022 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY 许可证开放获取的文章(http://creativecommons.org/licenses/by/4.0/)。
打开 / 关闭投影机 58 连接电源线 58 电源指示灯 59 打开投影机 60 显示初始设置屏幕时 61 进行调整和选择 65 关闭投影机 66 投影 67 选择输入信号 67 调整聚焦、变焦和镜头移位 68 将镜头位置移动到原始位置 69 通过镜头位置移位(光学移位)调整范围 69 使用 USB 存储器 70 使用须知 70 可用于投影机的 USB 存储器 70 连接 USB 存储器 70 移除 USB 存储器 71 使用遥控器操作 72 使用快门功能 72 使用静音功能 72 调整音量 73 使用冻结功能 73 使用屏幕显示功能 73 使用自动设置功能 74 使用屏幕调整功能 74 使用数码变焦功能 75 切换图像宽高比 76 使用演示计时器功能 76 使用功能按钮76 显示内部测试图案 76 使用状态功能 77 使用 ECO 管理功能 77 设置遥控器的 ID 号码 77
上市时间是决定集成电路设计开发成本的关键因素。自动化部分设计过程的工具可以节省开发时间,因为本质上是跳过了这些部分。在本项目中,基于现有存储器设计,使用 Cadence SKILL 语言为此目的开发了一个只读存储器生成器。此设计是一个具有 12 位输入地址的 1.8 V 异步存储器。位线的数量直接对应于输出数据总线的宽度。生成器功能包括存储器原理图和布局生成、存储器重新编程、自动解码和布局后访问时间模拟,以及生成用于 Verilog 中解码模拟的功能模型。可以使用直接集成到 Cadence Virtuoso 菜单中图形用户界面单独运行这些功能。在正常条件下,创建的内存范围从 128 B 到 65.536 kB,访问时间从 4.2 ns 到 6.9 ns。角运行显示最多比原始值增加 78%。此外,生成的内存布局面积从 21397 µm2 到 829776 µm2。最大内存生成时间为 1 小时 31 分钟。
摘要 实现功能性量子中继器是长距离量子通信的主要研究目标之一。在目前采用的不同方法中,依赖于与确定性量子发射器接口的量子存储器的方法被认为是最有前途的解决方案之一。在这项工作中,我们专注于实现基于存储器的量子中继器方案的硬件,该方案依赖于半导体量子点 (QD) 来产生偏振纠缠光子。通过研究与光子源效率最相关的性能指标,我们选择了制造、加工和调谐技术方面的重大发展,旨在将高纠缠度与按需对生成相结合,特别关注 GaAs 系统代表性案例中取得的进展。我们继续提供与量子存储器集成的观点,既强调了自然-人工原子接口的初步工作,也评论了目前可用且可能可行的多种存储器解决方案(在波长、带宽和噪声要求方面)。为了完成概述,我们还介绍了基于纠缠的量子通信协议的最新实现,并强调了实际量子网络实现面临的下一个挑战。
摘要 — 存储器编译器是促进数字电路设计过程的必要工具。然而,学术界只有少数可用的。电阻式随机存取存储器 (RRAM) 具有高密度、高速度、非易失性的特点,是未来数字存储器的潜在候选。据作者所知,本文介绍了第一个用于自动存储器生成的开源 RRAM 编译器,包括其外围电路、验证和时序特性。RRAM 编译器使用 Cadence SKILL 编程语言编写,并集成在 Cadence 环境中。布局验证过程在 Siemens Mentor Calibre 工具中进行。编译器使用的技术是 TSMC 180nm。本文分析了编译器生成的大量 M x N RRAM 的新结果,最多 M = 128、N = 64 和字长 B = 16 位,时钟频率等于 12.5 MHz。最终,编译器实现了高达0.024 Mb/mm 2 的密度。