巴拉那联邦大学 - CNPJ 75.095.679/0001-49 Cel。 Francisco H. dos Santos - 库里蒂巴 - 巴拉那州 - 巴西邮政编码 81531-980 - 电话:(41) 3361-3131 - 电子邮件:ccem@ufpr.br https://siga.ufpr.br/siga/visitante/autenticacao.jsp - 验证码:BprWjqV6k
房颤(AF)是最普遍的心律不齐,可能导致严重的并发症,例如中风。人工智能(AI)已成为预测和检测AF的重要工具,机器学习(ML)模型在心电图(ECG)数据(ECG)数据中现在能够识别高危患者或预测AF的即将出现。精确医学旨在根据使用大型基因组数据集对最有可能受益的患者的特定子群来量身定制医疗干预措施。遗传研究已经确定了与AF相关的许多基因座,但是将这些知识转化为临床实践仍然具有挑战性。本文探讨了AI在Precision Medicine中对AF的潜力,并研究了其优势,尤其是与基因组学合并或比较时。AI驱动的ECG分析为早期检测和个性化治疗提供了一种实用且具有成本效益的方法,并补充了基因组方法。基于AI的AF诊断允许几乎确定的预测,从而有效地减轻了此任务的心脏病专家。在预防性识别的背景下,AI在使用ML时将预测模型的准确性从75%提高到85%。在预测AF的确切发作(实际上是不存在的)时,AI的精度率达到了74%,具有显着的附加值。利用ECG而不是基因组数据的主要优点在于它们捕获患者心脏活动中终生变化的能力。对ECG的AI驱动分析可实现动态风险评估和对治疗策略的个性化适应,从而优化患者的预后。基因组学可以为每个患者提供个性化护理。通过将AI与心电图和基因组数据集成在一起,真正的个性化护理可以实现,超过了“普通患者”模型的局限性。
KMT5B的机制和人类神经发育的机制。 Sheppard,S.E。 ; Brying,L。; Wickramascaker,R.N。 ;疫苗接种,c。罗伯茨,b。简,J。; Hulen,J。;沃森(C.J.) ; Faunds,V。; duffourd,y。 Lee,P。;西蒙,M.C。 ; Cruz,X。 N。Patilla;弗洛雷斯·梅德(Flores-Mend); Akizu,n。;微笑,J。;来自R. Silva的Pellemino;仪式。;月,米;玫瑰,a。; Barcelo-Serts,i。 Choa,Z.X。 ; Lim,C.Y。 ;杜布格,c。日记,H。; Demurger,f。; Mulhern,M。;阿克曼,c。 Lippa,n。;安德鲁斯(M。); Baldridge,D。君士坦丁,J。;毛发,A。Van; Snoeck-streef,i。 Chow,P。; Hing,A。; J.M. Graham Jr ; au,m。; Faivre,L。; Shen,W。;毛。 J。Palubos; Viscope,d。; Gahl,W。; tifft,c。; Mamamara,E。; Hauser,n。; Miller,R。; Maffeo,J。; Afenjar,A。; Doummar,d。; Keren,b。 Arn,P。; Macklin-Mania,S。;消息,i。 Callewaert,b。对,a。; Zweier,c。; Brewer,C。; Saggar,A。; Smeland,M.F。 ;库马尔,阿吉斯; Elmslie,F。; Deshpand,c。很好,m。 Cogne,b。 Ierland,Y。Van;威尔克(M。); Slegtenst,M。Van;海岸Chhen,J.Y。 ;干燥,d。码头,d。 Wormanmann,S.B。 ; Kamstean,E.J。 ; Coch,J。; Haynes,d。;污染,L。; Tither,H。; Ranguin,K。; Pitch-Man,A.S。;韦伯,葬礼的佩雷斯,a。 Sanchez del Pozo,J。; J.M. Rosals ; Jose,P。;标准,K。;劳赫(Rauch) Mei,D。;玛丽,f。; Guerrini,r。 Lesin,J。; Tran Mau-Them,f。;菲利普,c。 Dauriat,b。雷蒙德(L. Raymond); Moutton,S。; Quiet-Gonzal,A.M。;火灾,T.Y。 ;朋友,c。格罗托(Grotto)肾脏,f。; Drive,T.G。 ;伊斯兰教。 Sidlik,J.A。 ;亨德森(L.B.)KMT5B的机制和人类神经发育的机制。Sheppard,S.E。 ; Brying,L。; Wickramascaker,R.N。 ;疫苗接种,c。罗伯茨,b。简,J。; Hulen,J。;沃森(C.J.) ; Faunds,V。; duffourd,y。 Lee,P。;西蒙,M.C。 ; Cruz,X。 N。Patilla;弗洛雷斯·梅德(Flores-Mend); Akizu,n。;微笑,J。;来自R. Silva的Pellemino;仪式。;月,米;玫瑰,a。; Barcelo-Serts,i。 Choa,Z.X。 ; Lim,C.Y。 ;杜布格,c。日记,H。; Demurger,f。; Mulhern,M。;阿克曼,c。 Lippa,n。;安德鲁斯(M。); Baldridge,D。君士坦丁,J。;毛发,A。Van; Snoeck-streef,i。 Chow,P。; Hing,A。; J.M. Graham Jr ; au,m。; Faivre,L。; Shen,W。;毛。 J。Palubos; Viscope,d。; Gahl,W。; tifft,c。; Mamamara,E。; Hauser,n。; Miller,R。; Maffeo,J。; Afenjar,A。; Doummar,d。; Keren,b。 Arn,P。; Macklin-Mania,S。;消息,i。 Callewaert,b。对,a。; Zweier,c。; Brewer,C。; Saggar,A。; Smeland,M.F。 ;库马尔,阿吉斯; Elmslie,F。; Deshpand,c。很好,m。 Cogne,b。 Ierland,Y。Van;威尔克(M。); Slegtenst,M。Van;海岸Chhen,J.Y。 ;干燥,d。码头,d。 Wormanmann,S.B。 ; Kamstean,E.J。 ; Coch,J。; Haynes,d。;污染,L。; Tither,H。; Ranguin,K。; Pitch-Man,A.S。;韦伯,葬礼的佩雷斯,a。 Sanchez del Pozo,J。; J.M. Rosals ; Jose,P。;标准,K。;劳赫(Rauch) Mei,D。;玛丽,f。; Guerrini,r。 Lesin,J。; Tran Mau-Them,f。;菲利普,c。 Dauriat,b。雷蒙德(L. Raymond); Moutton,S。; Quiet-Gonzal,A.M。;火灾,T.Y。 ;朋友,c。格罗托(Grotto)肾脏,f。; Drive,T.G。 ;伊斯兰教。 Sidlik,J.A。 ;亨德森(L.B.)Sheppard,S.E。; Brying,L。; Wickramascaker,R.N。;疫苗接种,c。罗伯茨,b。简,J。; Hulen,J。;沃森(C.J.); Faunds,V。; duffourd,y。 Lee,P。;西蒙,M.C。; Cruz,X。 N。Patilla;弗洛雷斯·梅德(Flores-Mend); Akizu,n。;微笑,J。;来自R. Silva的Pellemino;仪式。;月,米;玫瑰,a。; Barcelo-Serts,i。 Choa,Z.X。; Lim,C.Y。;杜布格,c。日记,H。; Demurger,f。; Mulhern,M。;阿克曼,c。 Lippa,n。;安德鲁斯(M。); Baldridge,D。君士坦丁,J。;毛发,A。Van; Snoeck-streef,i。 Chow,P。; Hing,A。; J.M. Graham Jr; au,m。; Faivre,L。; Shen,W。;毛。 J。Palubos; Viscope,d。; Gahl,W。; tifft,c。; Mamamara,E。; Hauser,n。; Miller,R。; Maffeo,J。; Afenjar,A。; Doummar,d。; Keren,b。 Arn,P。; Macklin-Mania,S。;消息,i。 Callewaert,b。对,a。; Zweier,c。; Brewer,C。; Saggar,A。; Smeland,M.F。;库马尔,阿吉斯; Elmslie,F。; Deshpand,c。很好,m。 Cogne,b。 Ierland,Y。Van;威尔克(M。); Slegtenst,M。Van;海岸Chhen,J.Y。;干燥,d。码头,d。 Wormanmann,S.B。; Kamstean,E.J。; Coch,J。; Haynes,d。;污染,L。; Tither,H。; Ranguin,K。; Pitch-Man,A.S。;韦伯,葬礼的佩雷斯,a。 Sanchez del Pozo,J。; J.M. Rosals; Jose,P。;标准,K。;劳赫(Rauch) Mei,D。;玛丽,f。; Guerrini,r。 Lesin,J。; Tran Mau-Them,f。;菲利普,c。 Dauriat,b。雷蒙德(L. Raymond); Moutton,S。; Quiet-Gonzal,A.M。;火灾,T.Y。;朋友,c。格罗托(Grotto)肾脏,f。; Drive,T.G。;伊斯兰教。 Sidlik,J.A。;亨德森(L.B.); Hennessy,L。; Raper,A。;父母,我。 Caiser,F.J。;有时,一个。布克,Ø.L。; Juusola,J。;人,r。 Schnur,R.E。; Vitobello,A。;银行; Bhoj,E.J。; Stepman,H.A.F。2023,文章 /编辑(Adventure Science,9,10,(2023),pp。EADE1463,第1463条)
白质区构成了大型大脑网络的结构基础。,我们将脑部全面的拖拉术应用于30,810名成年人(英国生物银行)的扩散图像,并发现90个节点级别和851个边缘级网络连接度量的遗传力显着。多元基因组的关联分析鉴定了325个遗传基因座,其中80%以前与脑指标没有相关。富集分析涉及神经发育过程,包括神经发生,神经分化,神经迁移,神经投射引导和轴突发育,以及产前脑表达,尤其是在干细胞,天文细胞,小细胞,小胶质细胞和神经元中。多元关联概要文件牵涉到31个基因座,这是左眼语言网络核心区域之间的连通性。的精神病,神经系统特征的多基因评分也显示出与结构连通性的显着多元关联,每种都暗示了与特征相关的功能曲线的不同大脑区域集合。这项大规模的映射研究揭示了对人脑结构连接的变异的共同遗传贡献。
请注意:如果程序是CACREP认可的,并且符合威斯康星州管理代码中的标准,则不会出现在此列表中。请参考威斯康星州行政代码MPSW 11.01 2.)b。关于五(5)个CACREP学位专长,将自动预先获得威斯康星州的批准。从这些专业中的一个cacrep批准的计划毕业的申请人必须将其学校提交表格#1960专业顾问专业教育证书作为其申请材料的一部分。下面列出的计划已申请在威斯康星州安全与专业服务部的批准之前,因为:1。目前未通过Cacrep或2。他们的计划专业化不是威斯康星州行政代码中列出的五(5)个预先批准的CACREP专业之一。所有DSP的预先批准的计划均由婚姻和家庭疗法,专业咨询和社会工作(MPSW)检查委员会的专业顾问部分进行了课程和课程审查和批准。申请人从DSP的预先批准的60个学分计划毕业,必须在其申请流程的一部分中提交官方成绩单,这些成绩单与批准的课程网格(下面列出的学校列出)进行了比较。课程在该计划的申请过程中审查和批准包括课程网格。 学校负责确保在更改或更新其课程之前,DSP批准了课程更改,以使课程网格保持最新。课程在该计划的申请过程中审查和批准包括课程网格。学校负责确保在更改或更新其课程之前,DSP批准了课程更改,以使课程网格保持最新。申请人与批准课程网格的任何替代/偏差都将要求申请人提交课程课程,以审查MPSW检查委员会的等效性,并且不能保证批准。
•预计您将重点关注文献中的两篇论文。但是,集中作品的数量没有限制。适当数量的论文将取决于您的主题。您必须比重点论文更多。至少列举了来自竞争性研究场所的八项发表的作品(请参阅本文档末尾的会议列表)。在这里,您选择的作品以及Google Scholar的引用是您的朋友;遵循一系列论文,您可以轻松地找到数十种相关作品。在这八个之外,请随时引用您认为合适的任何东西:博客文章,视频等都是公平的游戏。
在精确医学时代的早产新生儿中的“邀请评论”:一种基于重症监护的现代护理方法Daniele de Luca MD,医生和新生儿重症监护司,Paris saclay University Hospitals,Aphp(Paris)Innof uncation usipiut usiiparology usipiutagice usipiutagice usipiutagice usipiutagice usipiatutagy usiopiat usiopiat u u an an antoinebéclère”医院 Saclay University (Paris, France) President – Elect, Eur opean Society for Pediatric and Neonatal Intensive Care Running title: The modern approach to RDS in preterm neonates Word count: 2570 *Correspondence to: Daniele De Luca MD, PhD Service de Pédiatrie et Réanimation Néonatale Hôpital A. Béclère, GHU Paris Saclay, APHP 157 rue de la Porte de Trivaux,92140 Clamart(法国)电话:+33(0)145374837-传真:+33(0)145374546-电子邮件:dm.deluca@icloud.com利益冲突声明在主文本末尾提供
近几十年来,世界各地的医疗保健组织越来越认识到信息技术在各种应用中的价值。影响智能健康的三大新技术进步是元宇宙、人工智能 (AI) 和数据科学。元宇宙是三大技术——人工智能、增强现实 (AR) 和虚拟现实 (VR) 的交汇点。元宇宙提供了仍在不断涌现的新可能性和潜力。人工智能和数据科学提高了医院的工作效率,不仅改善了患者护理,还降低了医疗保健提供者的成本和工作量。人工智能与机器学习相结合,正在改变医疗保健行业。大数据的可用性使数据科学家能够使用数据进行描述性、预测性和规范性分析。本文回顾了多个案例研究以及有关医院管理中人工智能和数据科学应用的文献。本文还提出了元宇宙、人工智能和数据科学在智慧健康领域应用中尚未解决的研究问题和挑战。对于研究人员来说,除了提供元宇宙、人工智能和数据科学在医疗领域的发展和应用的良好概述外,本文还确定了未来可能的研究方向,并讨论了元宇宙、人工智能和数据科学在智慧健康领域的可能性。对于从业者来说,本文为医院决策者和医护人员提供了实用指南和智慧健康管理模型。
g天文释放肽受体(GRPR)或bombesin receptor 2是一种在几种实体瘤中过表达的膜受体,包括前列腺肿瘤,乳腺肿瘤,胃肠道基质肿瘤(GISTS),小细胞和非细胞和非细胞和非 - 小细胞肺癌,gastrino-Mas-mas-Mas-mas,结肠癌,蛋白癌,蛋白蛋白癌,蛋白蛋白蛋白酶,卵巢癌。这个目标增加了疗法的武术,因为许多光学含量的放射性药物已开始使用。Wang等人的文章。在《核医学杂志》中阐明了GIST中的GRPR成像(1)。PET/CT使用[68 GA] Ga-Nota-RM26(一种靶向GRPR靶向放射性药物),检测到16名患者的18个病理结构的GIST GIST病变中有88.9%,而[18 F] -FDG PET/CT仅检测到50%(p,0.01)。对于[68 Ga] ga- nota-rm26, suv max大大高于[18 f] -fdg(平均值,17.07 6 19.57 vs. 2.28 6 1.65; p,0.01),并且与免疫组织上的grpr不合理。作者发现GRPR PET/CT成像有助于将GIST与良性平滑肌瘤和Schwannomas区分开,基于GIST的SUV Max较高(1)。这些结果表明,以GRPR为目标的成像可能与选定患者的手术计划和治疗决策有关。然而,根据Wang等人提出的SUV最大临界值,异位胰腺与GIST更难区分。GIST是由肌肉肌的骨髓丛内的cajal间质细胞引起的间质肿瘤,典型地在胃中(60%),空肠和回肠(30%),或者,较少频率地,较少的,duododenum,duododenum,duododenum,duododeNum,colon,colon,or eypophagus。诊断时的平均年龄为60 - 65岁,没有性别偏好。GIST与在琥珀酸脱氢基因酶亚基中的一个中激活试剂盒(75%),血小板衍生的生长因子受体A(10%)或频繁突变(例如NF-1突变)或缺乏症有关。GIST通常以局部疾病的形式出现,但是复发和转移经常出现。先进的GIST通过手术和酪氨酸激酶抑制剂(例如,伊马替尼第一,苏替尼,雷莫非尼)的结合进行治疗,但患者随着时间的推移会发展出TKI耐药性。Reubi等人报道了在原发性和转移性GIST中GRPR和其他神经肽受体的高表达。 使用受体放射率,为设定基础在原发性和转移性GIST中GRPR和其他神经肽受体的高表达。使用受体放射率,为
低成本 DNA 测序的普及使另一种将人类遗传学与神经系统疾病的特定基因驱动因素联系起来的方法——全基因组关联研究 (GWAS) 复活。通过比较患病个体与未患病(“对照”)人群的基因组成,可以确定增加患病可能性的风险因素。GWAS 导致发现特定基因的变异,包括 TREM2(髓系细胞 2 上表达的触发受体)和 GBA1(葡萄糖脑苷脂酶 1),分别是非孟德尔 AD 和 PD 的风险因素。在某些情况下,GWAS 结果突出了以前被低估的导致发病的机制。例如,与 AD 风险相关的遗传变异在髓系细胞(可能是小胶质细胞)中起作用的基因和增强子(基因组中控制基因表达的区域)中富集。这表明先天免疫细胞在 AD 中发挥着重要作用。因此,特定生物途径中风险变异的丰富可以加深我们对神经退行性疾病的机制理解,甚至可能指出新的治疗目标。