深处的实验室基础设施已广泛用于探索罕见事件,例如质子衰减,暗物质搜索或中微子相互作用,利用了它们的大型MUON液压减少。但是,只有很少的研究评估了低背景辐射环境对生物体的影响。以此目的,Canfranc地下实验室(LSC)于2021年推出了生物学平台,为批准的生物学实验提供了实验室空间。已经建立了两个相同的实验室(地下和表面),以在相同条件下复制生物学实验,主要区别是宇宙辐射背景。使用LSC设施的访问协议包括每年两个打开的电话,并为执行实验程序分配了时间窗口,这导致了第一个批准并已经运行的实验。我们描述了Canfranc生物学平台的科学计划,该计划探讨了极端粒子,病毒感染,免疫系统,多细胞性,发育或衰老的宇宙沉默以及第一个实验结果。该平台还允许在没有辐射的情况下观察生命对微重力的反应,这是探索太空生命的关键条件。
空间环境的空间环境对太空行程包含主要危害,其中包括空间辐射和微型度量,如图1所示。空间辐射主要由电子和质子,太阳颗粒事件(SPE)和银河宇宙辐射(GCR)组成。SPE是来自太阳的高能电荷颗粒的数量很高(每单位时间)的事件。它们可以源自太阳浮动部位置或与冠状质量弹出相关的冲击波。GCR由高能电荷颗粒组成,该颗粒源自大型恒星的超新星和活性银河核。它从各个方向击中月球,火星,小行星和航天器,并且总是以背景辐射为单位。GCR是由核(完全离子化原子)的原始构成的,以及来自电子和正面的较小贡献(约2%)。1具有高原子数(z> 10)和高能量(E> 100 GEV)的GCR颗粒的小但很重要的成分。1这些高原子数,高能量(HZE)离子颗粒仅占总GCR含量的1-2%,但它们与非常高的特种离子化相互作用,因此贡献了约50%的长期空间辐射剂量的长期辐射剂量。2这些GCR颗粒,
本研究介绍了一种新型的超大规模集成 (VLSI) 系统中的错误检测和纠正方法,专门针对太空应用。本研究的核心是开发和实施一种复杂的二维纠错码,旨在显著提高外层空间恶劣条件下的内存可靠性。传统的纠错方法虽然在一定程度上有效,但无法解决突发错误这种复杂的现象——由于单一破坏性事件(如宇宙辐射)而同时在多个位中发生的错误。所提出的纠错方案创新地采用了扩展的 XOR 运算,覆盖了更大的数据块,从而为检测和纠正突发错误提供了更全面的解决方案。此外,循环冗余校验 (CRC) 技术的集成进一步增强了系统的错误检测和纠正能力。通过与现有方法的详细比较,我们的研究表明,所提出的二维代码不仅解决了当前纠错技术的局限性,而且还有助于提高太空工程中内存系统的可靠性。该方法的实施有望在突发错误普遍存在的环境中提供更好的性能,标志着空间系统设计和可靠性领域向前迈出的重要一步。
基于 SRAM 的 FPGA 因其现场可编程性和低成本而在航空航天工业中广受欢迎。然而,它们会受到宇宙辐射引起的单粒子翻转 (SEU) 的影响。三重模块冗余 (TMR) 是一种众所周知的缓解 FPGA 中 SEU 的技术,通常与另一种称为配置清理的 SEU 缓解技术一起使用。传统的 TMR 一次只能提供针对单个故障的保护,而分区 TMR 则可以提供更高的可靠性和可用性。在本文中,我们提出了一种使用概率模型检查在早期设计阶段分析 TMR 分区的方法。所提出的正式模型可以捕获单个和多个单元翻转场景,而不受任何相等分区大小假设的影响。从设计的高级描述开始,使用指定数量的分区、组件特性库和用户定义的清理率从数据流图 (DFG) 构建马尔可夫模型。这种模型和详尽的分析可以捕获辐射环境中系统中可能发生的所有故障和维修。然后使用 PRISM 模型检查器自动验证各种可靠性和可用性属性,探索清理频率与满足设计要求所需的 TMR 分区数量之间的关系。此外,报告的结果表明,基于已知的投票者故障率,可以找到最佳数量的
众所周知,地面宇宙辐射 (TCR) 会导致硅和碳化硅功率器件中发生电离事件,从而导致灾难性的后果 [1]。因此,功率器件的设计和可靠运行需要准确表征电荷沉积和收集过程。目前,量化功率器件对 TCR 的敏感性最常见、最快速的技术是基于粒子加速器中的高能粒子辐照 [2]。由于这些测试是在高加速条件下进行的,因此转换到真实的 TCR 环境并不总是很简单。在本文中,我们提出了一种实验装置,用于监测半导体功率器件中由电离辐射产生的非破坏性单电离事件的发生,以收集有关电荷产生和收集过程的精确统计数据。谱测量系统的设计方式使其可以部署在大量实验配置中,其中收集的电荷、计数率和 DUT 的额定电压可能会有很大变化。具体来说,光谱仪需要记录器件中产生的每个电离事件,这些事件的电荷脉冲范围从 1 fC 到 2 pC,以及其时间戳和波形。该系统需要处理高压器件(额定电压高达 3.5 kV),尽量减少偏置纹波和电压随时间漂移。为了提高收集数据的统计意义,需要并行测试器件。因此,系统必须对大输入电容(高达 2 nF)保持稳定,并为大输入电容提供准确的结果
职业中暴露于中子的人员仍然只占辐射工作者的一小部分。这一事实的经济影响,加上中子探测物理学的复杂性,是个人中子剂量测定系统发展相对缓慢的原因。尽管中子剂量测定技术没有取得质的飞跃,但它们在过去十年中因监管和技术挑战的出现而得到了显著改善。在监管层面,1996 年,欧盟理事会颁布了 96/29/EURATOM 指令 (EC 1996),要求欧盟成员国采用基于 ICRP 60 的基本安全标准,并要求评估天然辐射源(包括宇宙辐射)导致的暴露量显著增加。1996 年,ICRU 和 ICRP 联合发布了期待已久的操作剂量当量的官方转换系数,从而全面实施了 ICRP(1991 年)的 1990 年建议。ICRP(1997 年)指出了测量的准确性要求。对于美国,ANSI 在 2000 年发布的美国国家标准 N13.52 中公布了个人中子剂量测定系统的选择、使用和校准要求。2001 年,ICRU 发布了第 66 号报告,为测量中子操作剂量当量提供了指导,并指出了各种中子剂量测定系统的预期性能。最后,继 1998 年至 2001 年间发布的 8529 系列参考中子辐射标准之后,ISO 发布了关于被动个人剂量测定系统性能和测试要求的标准。
图1:充满活力的辐射环境。(a)宇宙银河辐射是银河事件的重复,例如发射γ-射线和高能量颗粒的超新星explosions和脉冲星(83.3%P +,13.72%↵,2%β,0.98%重量IONS)。(b)深空的另一个来源是宇宙太阳辐射,它发出p +,β,X射线和γ射线;这些组件的浓度和能量因太阳能活动(太阳风,太阳能和冠状质量弹出)而异。(c) The earth's magnetic field and atmosphere play a significant role in limiting some of these parti- cles reaching the surface of the earth where they are trapped inside the Van Allen outer magnetic belt (it consists mainly of β ), whereas the other cosmic particles interact with atmospheric par- ticles producing β , p + , and a small portion of heavy ions and trapped inside the inner belt.因此,可以将范艾伦带分类为位于地球轨道区域的辐射环境。(d)然而,某些宇宙辐射仍然可以通过这些皮带,并与地球大气分子(例如氧和氮)产生N 0,P +和PIONS(⇡)反应; ⇡最终β对(E -E +)和中微子。除了这些颗粒外,γ射线还从雷暴期间从大气中发出。(e)二元活性材料,例如铀,th及其衍生物,是另一种发射的陆层来源,它发出了↵,β和γ射线。β表示E-或E +颗粒ratiation,并且有些是核反应的无需副产物(↵,β,β,n0和γ-ray),这些副产品由动力工厂FA-a-lations产生。每种辐射的贡献都取决于每个区域中所描绘的电子的位置,有关详细信息,请参见补充表1和2。
摘要:有人提出,在无氧环境中,最后一个普遍的共同祖先(LUCA)在高温19次下进化,类似于深海通风口和火山斜坡上的环境。20因此,自发性DNA衰变(例如碱基损失和胞嘧啶脱氨酸)是影响卢卡基因组完整性的主要因素21。宇宙辐射是由于弱地球磁场和烷基化的22种代谢自由基所引起的,添加了这些威胁。在这里,我们提出,古代生活形式只有两种不同的23种修复机制:多功能的肾上腺素/肾上腺素(AP)核酸内核酸内核酸内核酸酶,以应对AP位点和24个脱氨基残基,以及酶催化紫外线和烷基化损害的直接逆转。在某些古细菌中,尿素-DNA N-糖基酶的缺失以及AP核酸内切酶的存在,即26可以切割含尿嘧啶的DNA,这表明AP内核酸内核酸酶引起的核苷酸切口修复27(NIR)途径27(NIR)途径从分别从Glycosylase介导的碱基降低层独立于Glycosypiend介导的碱基上的远程摄取。nir可能是28个遗物,出现在早期的嗜热祖先中,以抵消自发的DNA损伤。我们 - 29提出,地球大气中的氧气水平升高〜2 ga触发了狭窄的AP核酸内切酶和DNA糖基酶的狭窄狭窄,以有效地应对氧化量扩大的氧化31碱基损伤和复杂的DNA病变。32
地球表面温度≈300 K的陆地辐射集中在2.5至50 µm的波长范围内。同时,各种大气成分的综合作用,形成了8至13 µm之间的特殊大气窗口,该窗口高度透明。因此,大多数陆地区域可以通过透明的大气窗口有效地将热量辐射到寒冷的宇宙中,以维持相对稳定的温度。为此,辐射冷却器应在透明大气窗口(8–13 µm)内具有高的发射率,在该区域是透明的,并允许红外光通过。在这方面,过去几十年来人们设计了各种材料和结构,并在夜间表现出良好的被动冷却性能。 [8,9] 然而,在白天,太阳会加热辐射冷却器,这严重影响了冷却效果。为了解决这个问题,冷却器应该在反射阳光以避免太阳加热的同时,向寒冷的宇宙辐射更多的热量。Fan 等人 [10] 首次设计了多层光子材料,并在阳光直射下实现了白天辐射冷却,温度低于环境温度。此后,各种材料已被证明可以实现低于环境温度的白天辐射冷却,并显示出巨大的实际应用潜力。[11–13] 之前一些综述总结了辐射冷却方面的这些发展,[14–17] 但辐射冷却的净冷却功率有限和不稳定性阻碍了其实际广泛应用。在这篇综述中,通过总结被动式白天辐射冷却 (PDRC) 的最新研究和发展,我们首先提出了 PDRC 的三个关键组成部分:1)中红外范围的光谱设计,2)增强太阳反射率的结构设计,和 3)热管理。其次,我们介绍了PDRC的各种应用,例如建筑冷却、太阳能电池冷却、水收集、服装和发电(图1)。最后,我们还讨论了PDRC的剩余挑战和机遇。
未来月球和火星深空任务的主要担忧之一是宇航员的放射风险增加。他们将暴露在来自天然源的增强电离辐射下,如银河宇宙辐射、来自太阳的辐射(包括太阳粒子事件(SPE)中的高能带电粒子)以及地球周围的辐射带(1、2)。据估计,长期火星任务的累积辐射剂量将达到 1 Sv 或更多,具体取决于持续时间、屏蔽和太阳周期时间(3)。虽然这是一种罕见事件,但 SPE 粒子可进一步将其剂量增加到高达 10 Gy 的严重水平(4),这远远超出了辐射工作人员的剂量限值(5),并可能诱发严重的急性确定性效应,如造血功能退化(6)、生殖能力下降(7)、白内障(8),甚至死于急性放射综合征。出于对这些问题的考虑,美国国家航空航天局 (NASA) 和日本宇宙航空研究开发机构 (JAXA) 等太空机构制定了剂量限制标准,以将宇航员的空间辐射暴露控制在可接受的水平以下。表 1 列出了 NASA 之前的职业剂量限值 ( 1 ) 和 JAXA ( 9 ) 参与低地球轨道任务的宇航员的现行剂量限值。NASA 的限制旨在将宇航员所患癌症的风险增加限制在 3% 以内;更准确地说,基于对风险预测的不确定性的统计评估,NASA 宇航员因暴露而导致致命癌症死亡的风险限值不得超过 3% ( 10 ),置信度为 95%。由于单位剂量癌症风险通常会随着年龄的增长而增加 ( 5 , 11 , 12 ),因此老年宇航员的剂量限值要高于年轻宇航员。此外,在同一年龄段,女性宇航员的限值高于男性,反映出乳房对放射线的敏感性明显增高(5,11,12)。从表1中的数值可以看出,这些剂量限制标准使得年龄较大的男性宇航员比年轻或女性宇航员有更多的太空旅行机会,这可视为一个不平等的问题。随后,美国国家科学院(NAS)近期建议,应用基于中位数估计的600 mSv的与年龄和性别无关的有效剂量职业限值,以使35岁女性的癌症死亡率达到3%(13),取消了对年龄和性别的特定限制。该建议有望为不同年龄段的男性/女性宇航员提供同等的飞行机会