Loading...
机构名称:
¥ 1.0

地球表面温度≈300 K的陆地辐射集中在2.5至50 µm的波长范围内。同时,各种大气成分的综合作用,形成了8至13 µm之间的特殊大气窗口,该窗口高度透明。因此,大多数陆地区域可以通过透明的大气窗口有效地将热量辐射到寒冷的宇宙中,以维持相对稳定的温度。为此,辐射冷却器应在透明大气窗口(8–13 µm)内具有高的发射率,在该区域是透明的,并允许红外光通过。在这方面,过去几十年来人们设计了各种材料和结构,并在夜间表现出良好的被动冷却性能。 [8,9] 然而,在白天,太阳会加热辐射冷却器,这严重影响了冷却效果。为了解决这个问题,冷却器应该在反射阳光以避免太阳加热的同时,向寒冷的宇宙辐射更多的热量。Fan 等人 [10] 首次设计了多层光子材料,并在阳光直射下实现了白天辐射冷却,温度低于环境温度。此后,各种材料已被证明可以实现低于环境温度的白天辐射冷却,并显示出巨大的实际应用潜力。[11–13] 之前一些综述总结了辐射冷却方面的这些发展,[14–17] 但辐射冷却的净冷却功​​率有限和不稳定性阻碍了其实际广泛应用。在这篇综述中,通过总结被动式白天辐射冷却 (PDRC) 的最新研究和发展,我们首先提出了 PDRC 的三个关键组成部分:1)中红外范围的光谱设计,2)增强太阳反射率的结构设计,和 3)热管理。其次,我们介绍了PDRC的各种应用,例如建筑冷却、太阳能电池冷却、水收集、服装和发电(图1)。最后,我们还讨论了PDRC的剩余挑战和机遇。

日间辐射冷却的最新进展

日间辐射冷却的最新进展PDF文件第1页

日间辐射冷却的最新进展PDF文件第2页

日间辐射冷却的最新进展PDF文件第3页

日间辐射冷却的最新进展PDF文件第4页

日间辐射冷却的最新进展PDF文件第5页