摘要。我们提出了一个统一的理论,用于验证网络安全策略。作为指示图表示安全策略。要检查高级安全目标,表达了对策略的安全不变性。我们涵盖单调安全不变式,即禁止更多的人不会损害安全性。我们为安全不变理论提供以下贡献。(i)安全的方案特定知识的自动完成,这可以简化可用性。(ii)可以通过紧缩拒绝所有政策的安全不变性的保险来修复安全性。(iii)计算安全策略的算法。(iv)网络安全机制中状态连接语义的形式化。(v)一种算法来计算策略的安全状态实施。(vi)所有理论的可执行实现。(vii)示例,从飞机机舱数据网络到分析大型现实世界壁炉的分析。有关详细说明,请参见[2,3,1]。
摘要信息在经济中的作用,尤其是在运输中,伴随着网络威胁的增长。国际海事组织已经开发并采用了许多基础网络安全文件,这些文件定义了船上网络安全管理的要求。这些文件迫使海上公司的管理,以确保正确考虑网络风险并在安全管理系统中应用保护方法。对于海事公司和船只而言,相关统一规则的制定和建立是一项紧迫的任务。确保信息安全的最有希望的方向当然是使用数学模型。这样的模型描述了违反网络空间和保护系统的相互作用的过程,该过程应考虑到船上可能的网络攻击,并确保尽可能多地保存和不可能。分析网络空间中发生的流程数学模型的研究领域的研究表明,首先,这是一个真正相关的研究方向,其次,目前有许多不同的理论构成了建模的基础。这项工作的作者为船上网络安全管理系统的数学建模提出了一种新方法,即马尔可夫链理论的使用,因为在船上的网络攻击可以在任何随机的时刻发生,而且此事件并不总是取决于发生在某个时候的网络攻击。因此,使用数学建模方法构建了船上网络安全管理系统作为企业安全管理系统子系统的模型。诸如船舶的网络安全状态,国家之间的概率关系,根据国家对行动的监管。网络安全管理系统的数学模型基于离散的马尔可夫进程的模型,其中马尔可夫链的挖掘物的顶点是船舶的网络安全状态。使用专家方法研究了船体网络安全系统状态之间的连接。根据船舶的网络安全状况的示例说明了开发的模型。在距离“船舶计算机系统和网络的网络安全”中,在Kherson海事学院的教育过程中实施了船体网络安全系统的考虑方法和技术。
起重机操作。如果使用和维护得当,钢丝绳是一种非常有用且使用寿命长的结构元件。因此,钢丝绳安全是(或应该是)钢丝绳操作员和安全部门持续关注的问题。起重机钢丝绳的安全使用直接取决于钢丝绳的状况,以及及时可靠的钢丝绳检查。本研究重点是摩洛哥使用的起重机钢丝绳的故障分析。本文研究并介绍了钢丝绳的钢丝缺陷和状况。特别注意可能导致内部损坏的情况,例如钢丝断线、磨损以及腐蚀。在此应用中,已使用各种无损检测方法来控制钢丝绳,例如目视检查、射线照相和电磁。无损检测的结果使得确定绳索的安全状态并建立预防性维护程序以延长绳索的使用寿命成为可能。结论是,必须根据不同绳索应用中的退化机制来确定维护、检查和丢弃政策。
随着大型系统集成化、智能化程度的提高,其任务过程及系统内交互越来越复杂,人员不安全行为、设备故障、环境干扰等多因素间的复杂相互作用使安全性分析面临更大挑战。针对舰载机安全性,提出一种基于系统建模语言(SysML)与Simulink的舰载机着舰过程一体化系统建模与安全性分析方法。首先,根据任务过程分析,采用多种示意图构建SysML模型,包括系统结构和行为过程;其次,将SysML模型转化为Simulink平台并与之集成,构建具有连续动态特性的实体模型,通过仿真进行安全性分析;最后,以舰载机着舰姿态控制为例,对所提方法进行验证,并在不同扰动条件下对舰载机着舰过程的安全状态进行分析与评估。
她对员工的能力表示信念,并承诺通过组织更多的培训和讲习班来继续提高他们的技能。“毫无疑问,我对机构的工作人员的能力。您的作品说话;在生存的最后几年中,制定的法律文书,政策和准则揭示了管理层的坚定决定。”Agnes博士还向NBMA工作人员提供了支持,以相应地履行职责。她说:“我不能自己做,我们必须一起做,我们将把NBMA带到更高的高度”。她向工作人员保证,她将始终执行一项敞开的门政策,以便作为一个团队,他们可以提升机构以达到更高的高度。即将卸任的DG/首席执行官Rufus Ebegba博士在一份声明中透露了他在尼日利亚的生物安全和生物安全状态中所能充满了自己的最佳成就。为我的员工感到骄傲。
摘要 人工智能(AI)军事应用的监管日益受到关注。本文探讨了欧盟作为一个多层次系统如何基于认知权威来监管军事人工智能。这表明,欧盟充当军事人工智能的规则制定者和规则执行者,以构建私人、企业参与者作为专家为前提。作为规则制定者,欧盟成立了全球技术小组等专家小组来为其举措提供信息,从而邀请企业参与者通过前门参与其决策过程。但欧盟也是一个规则执行者,因为它对军事人工智能的监管方法是通过企业参与者设计人工智能技术的方式通过后门形成的。这些观察结果标志着一种新兴的混合监管安全状态,这种状态基于“流动”形式的认知权威,赋予企业行为者权力,但也代表着正式政治权威和非正式专家权威的复杂组合。
摘要。飞机起落架(ALG)的失效主要是由于振动疲劳引起的。其主要失效模式为疲劳断裂。目前,ALG的可靠性计算通常采用基于二元状态假设的应力强度干涉(SSI)模型。而实际情况是,强度随时间的推移而退化,失效与成功的界限模糊,二元状态假设与事实不符。针对这一问题,本文采用隶属函数(MF)表示振动疲劳失效模式下强度退化引起的模糊安全状态。此外,提出了一种基于模糊失效域(FFD)的ALG模糊可靠性模型(FRM)。最后,通过仿真算例验证了方法的可行性。通过将FRM的仿真结果(SR)与静态SSI模型和动态SSI模型的SR进行比较,验证了该方法的合理性。FRM可以在不考虑逐渐退化过程的情况下计算可靠性,因此应用更为广泛。
在启动应用程序或设备时,用户可以保证环境尚未被恶意或其他方式更改?确保环境的完整性和机密性至关重要,尤其是在不在完全控制和安全的环境中的系统中。设备的完整性确保其数据是准确的,并且没有被恶意药物篡改,从而保护信息内容。在这种情况下,有必要使用证明环境保持安全状态的机制。tpms对于确保计算系统的完整性和可信度至关重要。他们使用对称密钥方案和消息验证代码(MAC)验证了硬件和软件组件的真实性。此外,TPM支持使用公共密钥加密算法,以允许受信任的第三方评估和比较不同设备的完整性。此过程对于防止运营失败,财务损失,服务中断和安全风险至关重要,突出了TPMS在维持系统完整性和安全性中的关键作用。
根据战术要求,炸弹主体有各种引信组合。引信分为两大类 - 机械和电气。机械和电气引信可以安装在炸弹主体的头部和/或尾部。通过在保险叶片和引信主体中插入安全开口销或保险线,可使这些引信保持安全状态。机械引信通过保险线或系索启动,或者通过武器从飞机上释放时从机载设备传输到引信的电能启动。当机械引信武器被释放并从飞机上掉落时,保险线被从保险叶片上拉出。这样保险叶片就可以在气流中旋转,从而启动引信。出于紧急情况或其他战术原因,飞行员可以选择让保险线与武器一起落下。当飞行员使用此选项时,保险叶片无法旋转。因此,武器保持未保险状态。当电引信武器从飞机上释放时,它会从飞机发射电路接收必要的电压信号以启动引信。
大跨度预应力钢结构运维阶段是全寿命周期的核心环节。目前,对运维全过程安全风险变化规律的研究较少,尤其是如何有效利用运维阶段丰富的监测数据和相关安全风险信息,对结构运维全过程安全风险变化规律进行分析预测的研究,对预应力钢结构运维安全状态的判断和控制决策效率产生影响。以轮辐式索桁架为例,提出将数字孪生模型(DTM)与钢结构运维安全相结合的新理念。通过现实物理空间维度与数字虚拟空间维度的结合,基于假设的分析模型。以上提出了理论框架,并从大数据的角度对某预应力钢结构进行了案例分析,评估了该方法在预应力损失及不均匀雨雪荷载工况下应用的可行性。该方法可为运维管理提供指导,及时制定策略。