de Grave and Rogers(2013)将Macrobrachium Ohione列为以下美国的本地:弗吉尼亚州,德克萨斯州,南卡罗来纳州,阿拉巴马州,阿肯色州,阿肯色州,佛罗里达州,乔治亚州,伊利诺伊州,印第安纳州,路易斯安那州,路易斯安那州,密西西比州,密西西比州,密苏里州,密苏里州,北卡罗莱纳州,俄亥俄州,俄亥俄州和俄克拉荷马州。在美国De Grave and Rogers(2013)中的地位列出了以下美国的Macrobrachium Ohione作为本地:弗吉尼亚州,德克萨斯州,南卡罗来纳州,阿拉巴马州,阿肯色州,佛罗里达州,佛罗里达州,乔治亚州,伊利诺伊州,印第安纳州,印第安纳州,印第安纳州,路易斯安那州,路易斯安那州,密西西比州,密西西比州,密西西比州,密苏里州,北卡罗莱纳州,俄亥俄州,俄亥俄州和OKLAHAMA和OKLAHAMA和OKLAHAMA。来自De Grave and Rogers(2013):“在其范围的部分地区,尤其是北部和密苏里州和俄亥俄河,该物种在最近几十年中变得非常罕见。”根据Benson(2023)的说法,Macrobrachium Ohione于2005年在佛罗里达州的Caloosahatchee流域的本地范围内记录。 此引言的状态尚不清楚。 在美国的现场贸易中,没有发现任何大ohione的人出售。 法规在美国境内未发现有关财产或贸易的特定物种规定。 来自本森(2023)的美国介绍方式:“很可能是诱饵桶 多年来,在其本地诱饵和人类消费中都有一种商业渔业(Bowles等,2000; Bauer和Delahoussaye,2008年)。 De Grave and Rogers(2013)的言论:“ Bowles等。来自De Grave and Rogers(2013):“在其范围的部分地区,尤其是北部和密苏里州和俄亥俄河,该物种在最近几十年中变得非常罕见。”根据Benson(2023)的说法,Macrobrachium Ohione于2005年在佛罗里达州的Caloosahatchee流域的本地范围内记录。此引言的状态尚不清楚。在美国的现场贸易中,没有发现任何大ohione的人出售。法规在美国境内未发现有关财产或贸易的特定物种规定。来自本森(2023)的美国介绍方式:“很可能是诱饵桶多年来,在其本地诱饵和人类消费中都有一种商业渔业(Bowles等,2000; Bauer和Delahoussaye,2008年)。 De Grave and Rogers(2013)的言论:“ Bowles等。(2000)还提到了该物种发生在墨西哥东北部的沿海溪流中,但这并没有得到其他出版物的证实。”摘自Bauer和Delahoussaye(2008):“其范围北部(包括密西西比州和俄亥俄州河流)的物种的衰落可能部分通过人类对少年迁移以及随后进行上游招募的影响来解释。”
连续变量簇状态与将量子比特编码为玻色子模式的 Gottesman-Kitaev-Preskill (GKP) 结合使用时,可实现基于容错测量的量子计算。对于四轨晶格宏节点簇状态,其构造由固定的低深度分束器网络定义,我们表明,Clifferd 门和 GKP 误差校正可以在单个传送步骤中同时实现。我们给出了实现 Clifferd 生成集的明确方法,并在簇状态和 GKP 资源有限压缩的情况下计算逻辑门错误率。我们发现,在 11.9–13.7 dB 的压缩下,可以实现与拓扑码阈值兼容的 10 − 2 – 10 − 3 的逻辑错误率。所提出的协议消除了先前方案中存在的噪声,并将容错所需的压缩置于当前最先进的光学实验范围内。最后,我们展示了如何直接在簇状态中产生可提取的 GKP 魔法状态。
犬类肠道微生物组是兽医和人类健康研究的关键模型,但由于方法上的变化而出现了不一致的发现。本研究提出了一个三部分的数据集,以阐明DNA提取,底漆选择和测序平台如何影响微生物分析。首先,我们使用五个DNA隔离试剂盒,多个库协议和四个测序平台(Illumina Miseq/Novaseq,Ont Minion,Pacbio Sequel IIE),启用16S RRNA和Shotgun测序技术的直接比较。第二,我们使用Zymo高分子量(ZHMW)和Zymo Magbead(ZMB)提取试剂盒分析了八只共同犬的40个粪便样品,以评估纵向提取效果。第三,我们使用合成模拟群落和人/犬粪便样品评估了三个16S引物系统(标准ONT,PACBIO,并用退化碱基修饰)来量化底漆偏见。通过整合合成和生物学重复,该数据集提供了标准化资源,用于基准生物信息学管道并改善跨研究可比性。该研究生成了75.3FGB的新测序数据:ZHMW- ZMB比较的43.45FGB,22.61FGB用于引物评估,而单样本分析中的9.19FGB。与先验数据的31.5FGB结合在一起,总数据集超过106FGB,包括所有分析输出。这些资源提高了不同实验室工作流程的犬类肠道微生物组研究的方法论透明度和准确性。
在零售和消费者水平上的人均全球食品浪费,并通过预防,减少,回收和再利用大大减少了废物的产生[2]。这种浪费是一个问题,因为它对全球经济,粮食供应和环境产生了巨大的负面影响。根据粮农组织的说法,大约三分之一的用于人类消费的食物被浪费或不消耗(浪费)。食物浪费的总价值为13亿吨或9900亿美元。这种食物足以养活饥饿感的世界八分之一的人口[1,3]。该百分比约为归因于未消耗的食物的全球温室气体排放的8%至百分之十[4]。食物浪费还负担废物管理系统,加剧粮食不安全,使其成为一种
。cc-by-nc-nd 4.0国际许可证未通过同行评审获得证明)是作者/资助者,他已授予Biorxiv授予Biorxiv的许可,以永久显示预印本。它是制作
摘要 CRISPR 相关转座子 (CAST) 会将 Cas 基因纳入 RNA 引导的转座。CAST 在基因组数据库中极为罕见;最近的调查报告称,Tn7 样转座子会将 IF、IB 和 VK 型 CRISPR 效应子纳入。在这里,我们通过对宏基因组数据库进行生物信息学搜索来扩展已报告的 CAST 系统的多样性。我们发现了所有已知 CAST 的新架构,包括级联效应子的新排列、新的自靶向模式和最小 VK 系统。我们还描述了已将 IC 型和 IV 型 CRISPR-Cas 系统纳入的新 CAST 家族。我们对非 Tn7 CAST 的搜索确定了将 Cas12a 纳入水平基因转移的推定候选者。这些新系统揭示了 CRISPR 系统如何与转座酶共同进化并扩展了可编程基因编辑工具包。
研讨会针对生物学,生物医学研究,健康科学和相关领域的学生和专业人员,他们有兴趣学习和共享基因组学,宏基因组学和人类微生物组的概念,工具和研究结果。研讨会将通过理论讲座和研讨会以及生物信息学和生物统计学中的实践动手会议来培训该领域最先进的分析方法的参与者。几次会议将用于培训用于使用集成微生物基因组系统(IMG)的培训,这是美国DOE联合基因组研究所(加利福尼亚州伯克利)开发的数据库和分析平台,以综合研究基因组和Metagenomes。IMG系统将由JGI的Microbial Genomics&Metagenomics Scientific Program(负责IMG开发的小组)的Natalia Ivanova博士和Rheka Seshadri博士提出。
脊柱侧弯是脊柱的异常曲率,可能导致许多问题,包括严重的慢性疼痛。虽然脊柱侧弯的确切原因尚未被清楚地鉴定出来,但在脊柱侧弯领域内将干细胞研究和治疗纳入的新数据倡导。脊柱侧弯往往不是致命的慢性疾病,因此在干细胞的研究中尚未将其优先考虑。基于缺乏数据,不能得出任何具体结论,但是发现新的相关性表明干细胞中的故障可能是脊柱侧弯的原因,并且有可能用于纠正脊柱侧弯。扩大了这一点,一项对一个小男孩的研究在植入间充质干细胞时的脊柱曲率有所改善。使用MSC进行脊柱融合时,另一种类型的脊柱侧弯也有所改善。本文旨在比较MSC对引起脊柱侧弯的影响,同时还编译了提出的研究干细胞的研究可以帮助疼痛管理甚至正确的曲率。当前的脊柱侧弯治疗可能会有严重的并发症,并且不能保证它可以纠正脊柱。通过进行了更多研究,分析了干细胞对脊柱侧弯的影响,我们可以希望开始找到创造更有效和道德治疗的原因。
摘要CRISPR相关的转座子(铸造)CAS基因用于RNA引导的转座。在基因组数据库中极为罕见。最近的调查报道了类似TN7样的转座子,该座子选择了I型I-F,I-B和V-K CRISPR效应子。在这里,我们通过对元基因组数据库的生物信息学搜索扩展了报告的铸造系统的多样性。我们发现了所有已知铸件的新架构,包括级联效应器的新布置,新的自动定位方式和最小的V-K系统。我们还描述了采用I型I-C和IV型CRISPR-CAS系统的新型演员群。我们对非TN7铸造的搜索确定了对水平基因转移的合作候选者。这些新系统阐明了CRISPR系统如何与转座酶一起进化并扩展可编程基因编辑工具包。