我们介绍了一个多物理学和几何多尺度计算模型,适合描述由四腔机电模型驱动的整个人心脏的血液动力学。我们首先介绍了一项关于生物物理详细的RDQ20主动收缩模型(Regazzoni等,2020)的校准的研究,该模型能够重现血液动力学生物标志物的生理范围。然后,我们证明了力产生模型再现某些显微镜机制的能力,例如力对纤维缩短速度的依赖,对于捕获总体生理机械和流体动力学宏观行为至关重要。这激发了使用具有较高生物物理有效性的多尺度模型的需求,即使感兴趣的输出相对于宏观尺度。我们表明,使用高实现机电模型,结合了详细的校准过程,使我们能够以机械和血液动力学数量来实现显着的生物物理效果。的确,我们的机电驱动的CFD模拟 - 在整个心脏的解剖学精确几何形状上进行 - 提供了与心脏生理学相匹配的结果(以流量模式)和定量(在与生物标志物在生物标记中的比较时)。此外,我们考虑了左束分支块的病理病例,我们研究了由于我们的多物理综合模型,因此电气异常对心脏血流动力学的后果。我们提出的计算模型可以忠实地预测病理性条件下左心室的延迟和增加的壁剪应力。在集成框架中不同的物理过程的相互作用使我们能够通过捕获和再现人类心脏的内在多物理性质来忠实地描述和建模这种病理。
1. 恒定负载点下汽车涡轮增压器的传热:实验和计算研究 A. Romagnoli、R.M.F. Botas 1-7 2. 燃气轮机冷却系统的多尺度热测量和设计 HyungHee Cho、Kyung Min Kim、SangwooShin、Beom Seok Kim 和 Dong Hyun Lee 8-13 3. 小型双向流离心泵作为终末期患者的心室辅助装置 Andy C C Tan 14-19 4. 不同扫掠轴流风扇壁面压力波动的实验研究 J. Hurault、S. Kouidri、F. Bakir 和 R. Rey 20-26 5. 使用格子玻尔兹曼方法进行中观和宏观尺度流体流动模拟 A.A. Mohamad 27-32 6. 局部动力学工程流动性能:理论与应用 吴杰志,毛峰,苏伟东,吴红,李秋实 33-43 7. 满负荷尾水管喘振的一维分析 Yoshinobu Tsujimoto,KoichiYonezawa,ChangkunChen 44-56 8. 先进无二氧化碳发电站技术的未来发展 D. Bohn 57-65 9. 离心泵叶轮-蜗舌相互作用和非稳定流体流动的数值分析 K.W Cheah,T.S. Lee,S.H Winoto 和 Z.M Zhao 66-71 10.往复式内燃机涡轮增压器非稳定特性分析程序 A. Torregrosa,J. Galindo, J.R. Serrano 和 A. Tiseira 72-79 11. Alta S.P.A. 和比萨大学的空化和涡轮泵流体动力学研究 Angelo Cervone、Lucio Torre、Angelo Pasini 和 Luca d'Agostino 80-88 12. 减速旋流控制
纳米尺度对热传输的影响有望在先进半导体架构的散热中发挥重要作用,并提高新型热电材料的效率。热传输测量通常在宏观尺度上进行,并给出多材料结构(包括各种界面和材料)的整体响应。纳米级材料和界面中热传输的原子计算机模拟有助于分析实验,了解尺寸和时间尺度的限制效应,并评估相关的宏观模型。1 到目前为止,通过分子动力学 (MD) 模拟对原子尺度上的热传输进行建模主要遵循两种方法。第一种方法称为平衡 MD,2 基于在给定温度下平衡的系统中热流波动的量化。最终使用 Green-Kubo 或爱因斯坦涨落关系来提取块体材料的热导率。第二种方法称为非平衡 MD 或直接法 3,其基础是在热源和热沉之间建立稳态热流,并从温度梯度的斜率或不连续性中分别提取热体积电导率或界面电导率。在目前的研究中,我们开发了一种不同的方法,称为 AEMD,即“接近平衡” MD。通过划定一个与其他部分温度不同的加热部分,最初将系统设置为非平衡状态。然后监测接近平衡的情况,即两部分之间的温差随时间的变化。可以证明,对于大多数实际关注情况,温度衰减呈指数增长。通常在几十分之一到几百皮秒内达到平衡,因此,与平衡MD中自相关函数的计算和非平衡MD中稳态热流的建立相比,计算成本大大降低。此外,AEMD方法基于平均
冷却宏观物质的质量运动对其量子基态一直是物理界的目标,因为它被认为是迈向跨量子效应的量子效应的第一步,例如对宏观尺度观察到量子效应 - 例如,通过对空间量子量的限制,也有4个单个大型大型粒子 - 通过偏离已知相互作用的偏差并检查新颗粒的假设以搜索新物理学[5-9]。对量子状态中巨大颗粒的重力作用的研究引起了人们的关注[10,11],因为这可能是通过实验通过实验来照亮量子力学和重力之间的相互作用的一种方法。可以理解,可以通过通过不同的悬浮方式将机械振荡器从其环境中脱离环境来实现量子状态的较大宏观量[12]。捕获和冷却大型(大于µm长度)颗粒到量子基态的运动极具挑战性。光学诱捕技术适用于捕获亚微米尺寸的颗粒,并且在悬浮的验光力学中已经使用了线性反馈技术将其冷却纳米颗粒至其运动基态[13,14]。最近,达到了两种元模式的同时基态冷却[15],即使大型ligo镜的运动也通过反馈[16]在接近量子基态的附近冷却[16],除了许多夹紧机械系统[17] [17]。然而,捕获场中光子的吸收和后坐力充当耗散极限,该极限与捕获粒子半径的第六功率缩放[18],并且通过与黑色身体和捕获激光辐射的相互作用的光学左右量子态在光学左旋中存在坚硬的脱谐度限制[19] [19] [19]。
木材是一种天然复合材料,主要由三个成分,即纤维素,半纤维素和木质素组成。它表现出复杂的层次结构,其特征在于开放式通道,在生长区域排列,在微型,中,中,中和宏观尺度上具有特定的孔隙率,并且由于木质素和散射的存在,由于吸附现象而引起的不透明度,因此具有不同的折磨索引,其表征了其组合物。即使在历史时代,其某些应用已被其他材料取代,木材仍然涵盖了很大一部分常见用途,范围从生物量的能源回收到建筑部门的材料,或者从文物到家庭/家具制造。尽管其真正的发明可追溯到1992年,大约十年前,两个独立的研究小组,一个来自马里兰州大学(美国),另一个来自皇家技术学院(瑞典),并开始重新发现,并开始彻底调查所谓的透明木材(TW)。tw可以通过针对木质素的特定化学处理来源自几乎所有木材生物量。这些旨在完全从木材中清除该成分,或消除原始材料中存在的发色团基团,因此在直接致密化或用合适的聚合物树脂,具有很高透明度,韧性和亮度的新材料后获得后获得。本评论的目的是为读者提供透明木材的特征概述,描述了最新的应用程序,最后讨论了未来几年可能发展的一些具有挑战性的问题和观点。这些特征可以与其他特定功能(例如环境保护,粘贴率,光致发光和能源储能能力等)相结合,这为开发新,最新,高级,高级和可持续材料开辟了道路,以实现结构和功能目的,以实现当前的循环经济和可持续性的概念。
由于特性的独特组合,包括高硬度,低密度,化学和热稳定性,半导体和高中子吸收,硼碳化物(B 4 C)是涉及极端环境的各种应用的潜在候选者。但是,B 4 C的当前应用由于其低断裂韧性而受到限制。在这项研究中,通过同时利用包括裂纹偏转,桥梁和微裂缝韧性在内的多种韧性机制,使用了具有包括Tib 2晶粒和石墨血小板在内的特征的分层微观结构设计。使用现场辅助烧结技术(快速),制造了具有密度和分层微结构的B 4 C复合材料。以前,使用微缩进在微尺度上测量了制造的B 4 C复合材料的断裂韧性,以提高56%。在这项工作中,B 4 C复合材料的断裂韧性在宏观尺度上是使用四点弯曲方法来表征的,并将其与在微尺度上获得的先前结果进行了比较。还进行了B 4 C-TIB 2复合材料的断裂行为的微力学模型,以评估实验观察到的坚韧机制的贡献。在四点弯曲测试中,B 4 C复合材料与TIB 2粒(约15粒体积)和石墨血小板(〜8.7 vol%)增强的B 4 C复合材料均表现出最高的断裂韧性从2.38到3.65 MPA∙MPA∙MPA∙M1/2。测量值低于使用微缩号获得但保持一般趋势的值。压痕和四点弯曲测试结果之间的差异源自凹痕测试期间高接触载荷触发的复杂变形行为。通过微力学建模,由于B 4 C和TIB 2之间的热膨胀不匹配引起的热残留应力,并且B 4 C-TIB 2边界处的弱相互作用被确定为实验观察到的韧性增强的主要原因。这些结果证明了B 4 C韧性的层次微结构设计的有效性,并可以为B 4 C复合材料的未来设计提供具有优化的微结构的未来设计,以进一步增强断裂韧性。
1.简介 本报告涉及微机电系统(MEMS)这一新兴领域。MEMS 是一种工艺技术,用于创建结合了机械和电气元件的微型集成设备或系统。它们采用集成电路 (IC) 批处理技术制造,尺寸范围从几微米到几毫米。这些设备(或系统)能够在微观尺度上进行感应、控制和驱动,并在宏观尺度上产生影响。MEMS 的跨学科性质利用了来自广泛而多样的技术领域的设计、工程和制造专业知识,包括集成电路制造技术、机械工程、材料科学、电气工程、化学和化学工程,以及流体工程、光学、仪器仪表和封装。MEMS 的复杂性还体现在包含 MEMS 设备的广泛市场和应用范围内。MEMS 可应用于汽车、医疗、电子、通信和国防等各个领域。当前的 MEMS 设备包括安全气囊传感器的加速度计、喷墨打印机头、计算机磁盘驱动器读/写头、投影显示芯片、血压传感器、光开关、微型阀、生物传感器以及许多其他以高商业量生产和出货的产品。MEMS 被认为是 21 世纪最有前途的技术之一,它有可能通过将硅基微电子技术与微加工技术相结合,彻底改变工业和消费产品。它的技术和基于微系统的设备有可能极大地影响我们所有人的生活和生活方式。如果说半导体微加工是第一次微制造革命,那么 MEMS 就是第二次革命。本报告介绍了 MEMS 领域,分为四个主要部分。第一部分向读者介绍了 MEMS、其定义、历史、当前和潜在应用,以及 MEMS 市场现状和小型化问题。第二部分介绍了 MEMS 的基本制造方法,包括光刻、体微加工、表面微加工和高纵横比微加工;还介绍了 MEMS 设备的组装、系统集成和封装。最后一部分阐述了 MEMS 行业在实现 MEMS 商业化和成功方面面临的挑战。2.第三部分回顾了 MEMS 传感器和执行器的范围、可以用 MEMS 设备感知或作用的现象,以及基本感知和执行机制的简要说明。微机电系统 (MEMS)
全球有超过 5500 万人患有痴呆症,目前与痴呆症相关的年度费用估计为 1.3 万亿美元。此外,患者数量和相关费用还将继续增加 (1)。痴呆症已成为全世界严重的社会和经济问题,因此需要紧急解决。2021 年,美国食品药品监督管理局 (FDA) 加速批准了针对淀粉样蛋白 β (A b ) 聚集体的单克隆抗体 aducanumab,这是首个获批直接针对阿尔茨海默病 (AD) 核心病理生理的药物。此后,FDA 还在 2023 年传统批准了第二种针对 AD 基本病理生理的药物 lecanemab-irmb。这些批准开创了 AD 研究、早期生物标志物支持的诊断和生物特异性治疗的新时代 (2)。最近一项使用正电子发射断层扫描 (PET) 的研究显示,在先前诊断为 AD 的患者中,A b 聚集体的阳性率仅为 63.8% ( 3 )。临床上 AD 诊断并不总是依赖于通过脑脊液 (CSF) 测定或 PET 确认的 AD 病理存在(即 AD 生物标志物阳性);理想情况下,这些应该是开始疾病改良疗法的先决条件 ( 2 )。生物标志物的识别可能是侵入性的或昂贵的,并且只能在拥有最先进设备的医院进行 ( 4 )。这些局限性凸显了在迅速增长的痴呆症患者群体中广泛用于筛查的筛查评估的必要性。脑电图 (EEG) 是一种用于在临床实践中识别生物标志物而不受这些限制的工具。 EEG 信号源自电磁场,源于宏观尺度上皮质神经元的相互作用 ( 5 )。因此,EEG 被视为确定痴呆相关疾病中突触功能障碍和恶化的功能性生物标志物的主要候选方法 ( 6 )。EEG 是一种非侵入性方法,以其经济实惠、广泛可用和对大脑功能状态的敏感性而闻名 ( 7 )。最近,EEG 已被用作筛查和辅助诊断痴呆症的有前途的检查方法 ( 8 ),并产生与神经退行性疾病相关的神经生理学发现 ( 7 )。
工程硕士课程设置 项目名称:冶金与材料工程硕士(工程) 系别:冶金与材料工程研究所(IMME) 学院:化学与材料工程学院 研究所使命:IMME 的使命是提供良好的学术和研究环境,通过冶金与材料工程领域的优质教育,培养具备足够知识和实践技能、有修养、专业的人才,使他们在工业和研究领域做出有效贡献,从而改善社会。 项目介绍 二十多年来,冶金与材料工程硕士(工程)课程一直是冶金与材料工程研究所的一个成熟且备受推崇的课程。它是一条专业的学术途径,旨在让学生掌握冶金、材料科学与工程领域的高级知识和技能。该课程深入研究冶金和材料工程的基本原理、应用和进步,为毕业生在航空航天、汽车、电子、建筑等行业的职业生涯做好准备。随着技术的快速发展和各行各业对创新材料的需求不断增加,对冶金和材料工程专业人才的需求也日益增长。汽车、航空航天、能源和电子等行业严重依赖材料科学的进步来提高其产品的性能、耐用性和可持续性。冶金与材料工程硕士(工程)等专业课程通过培养具备应对复杂材料挑战专业知识的毕业生来满足这一需求。材料在推动创新和技术进步方面发挥着至关重要的作用。从开发用于运输的轻质合金到设计用于医疗应用的新型生物材料,材料科学领域充满了开创性研究和开发的机会。通过提供有针对性的课程和研究机会,冶金与材料工程硕士课程培养了一种创新文化,使学生能够通过创造新材料和新工艺为前沿研究做出贡献并应对全球挑战。冶金与材料工程本质上是多学科的,借鉴了物理学、化学、机械工程、化学工程等原理。这种跨学科性质需要专门的教育和培训,以了解原子、微观和宏观尺度上材料之间的复杂相互作用。理学硕士课程让学生全面了解材料的结构、特性、加工和性能,使他们能够从整体的角度解决现实世界的工程问题。
我们推出《生物医学光学快报》光学与大脑专题,该专题将于 2023 年 4 月 24 日至 27 日在加拿大温哥华举行的 Optica 生物光子学大会:生命科学中的光学部分举行。这次会议是讨论现有和新兴技术以及未来方向的论坛,以揭示健康和患病大脑的新亮点。光学提供了一个独特的工具包,用于从微观到宏观尺度对活体和完整大脑进行多尺度成像。同时,基因标记策略为图像神经功能提供了光学对比,而光遗传学允许用光控制细胞功能。为了涵盖实现这些不同目标所需的专业知识,会议汇集了工程师、光学和医学科学家、生物学家、化学家和医生。本期特刊中的文章代表了参与《光学与大脑》的社区的广泛范围。漫射光学器件可以利用近红外光探测人体组织中厘米深处,从而无创地到达活体大脑。一篇评论文章 [ 1 ] 强调了使用近红外光谱 (NIRS) 的非侵入性光学成像方法在成人和新生儿中测量氧化细胞色素-c-氧化酶。另一项使用传统血红蛋白 NIRS 的研究 [ 2 ] 表明,虚拟现实游戏任务可以比简单的抓握动作更好地调节大脑功能网络。这一发现对于中风后手部麻痹患者恢复抓握能力具有重要意义。光学方法还可以阐明脑组织的结构和生化组成。在癌症诊断中,另一项研究 [ 3 ] 调查了激光诱导击穿光谱 (LIBS) 和电火花辅助激光诱导击穿光谱 (SA-LIBS) 在区分胶质母细胞瘤 (GBM) 和少突胶质细胞瘤 (OG) 与非肿瘤浸润脑组织中的应用。作者展示了 SA-LIBS 在区分肿瘤组织以及多参数表征方面的优势。在另一项工作 [ 4 ] 中,展示了一种用于立体定向神经外科无标记成像的双光子微内窥镜。该装置足够小,可以放入手术套管中。另一项工作 [ 5 ] 使用连续切片偏振敏感光学相干断层扫描展示了人类脑组织块中髓鞘的无标记成像