现代材料科学见证了先进制造方法的时代,从纳米到宏观尺度设计功能。虽然人们已经开发出了多功能制造和增材制造方法,但为特定应用设计材料的能力仍然有限。本文介绍了一种新颖的策略,该策略能够以目标为导向制造具有按需特性的超轻气凝胶。该过程依靠通过界面络合进行的可控液体模板来生成可调的、刺激响应的 3D 结构(多相)丝状液体模板。该方法涉及纳米级化学和纳米粒子 (NPs) 在液-液界面的微米级组装,以生产具有多尺度孔隙率、超低密度(3.05-3.41 mg cm −3)和高压缩率(90%)以及弹性回复和即时形状恢复特性的分层宏观气凝胶。超轻气凝胶面临的挑战已经得到克服,包括机械完整性差以及无法形成具有按需功能的预定义 3D 结构,以用于多种应用。该方法的可控性使得可调谐电磁干扰屏蔽具有高比屏蔽效率(39 893 dB cm 2 g − 1)和有史以来最高的吸油能力之一(氯仿气凝胶初始重量的 487 倍)。这些特性源于液体模板的可工程性,将轻质材料的界限推向系统功能设计和应用。
自激振荡(系统在非周期性刺激下的周期性变化)对于在软机器人技术中创建低维护自主设备至关重要。宏观尺寸的软复合材料通常掺杂有等离子体纳米粒子,以增强能量耗散并产生周期性响应。然而,虽然目前尚不清楚光子纳米晶体的分散体是否可以作为软致动器对光作出反应,但对纳米胶体在液体中自激振荡的动态分析也缺乏。这项研究提出了一种用于照明胶体系统的新型自激振荡模型。它预测热等离子体纳米粒子的表面温度及其簇的数密度在从次声到声学值的频率范围内共同振荡。对自发聚集的金纳米棒的新实验,其中光热效应在宏观尺度上改变了光(刺激)与分散系统的相互作用,有力地支持了该理论。这些发现拓展了目前对自激振荡现象的认识,并预测胶体状态的物质将成为容纳光驱动机械的合适载体。从广义上讲,我们观察到一种复杂的系统行为,从周期性解(霍普夫-庞加莱-安德罗诺夫分岔)到由纳米粒子相互作用驱动的新动态吸引子,将热等离子体与非线性和混沌联系起来。
本文是一篇开放获取文章,根据知识共享署名 (CC BY) 许可条款和条件分发(https//creativecommons.org/licenses/by/4.0 /) 收到日期:2022 年 12 月 2 日;接受日期:2023 年 2 月 23 日;在线日期:2023 年 6 月 8 日 摘要 我们将预知情感(由保存倾向状态的信息组成)定义为主观意向性的非语境性、基本构成要素。我们采用心理动力学方法来处理意向性。在有生命的热力学中,意图展开为行动,通过负熵作用减少主观不确定性。它们是行动中的意图,在与各种受调控的基因组具有复杂蛋白质相互作用的物种中具有意义。特别是,由主观功能引入的生物学目的方面的意向性展开可以令人满意地解释主观意向性。表演的潜在经验为从主观功能理解预知情感的意义铺平了道路。因此,大脑的主观意向性作为行动的根本经验,嵌入在“隐藏”热力学能量的负熵“意识代码”中。它是大脑意识在宏观尺度上统一运作时负熵衍生的量子势能。而在中观尺度上,薛定谔过程为负熵行动创造了边界条件,以指导意向行动。
对于广大读者来说,我简要回顾一下这段“量子”之旅可能会有所帮助,因为大众媒体经常给人一种感觉,认为 QST 是突然发生的。我必须消除这种印象或信念。量子力学或量子物理学诞生于一百多年前,目的是解释某些似乎是“异常”的现象,根据当时已经获得非常强大结构的古典物理学定律和原理。从马克斯·普朗克的假设开始,量子物理学背后的基本理论原理大约在 20 世纪前 25 年建立起来,薛定谔、海森堡、马克斯·玻恩、尼尔斯·玻尔、狄拉克、冯·诺依曼、爱因斯坦、我们自己的 S.N. 做出了里程碑式的贡献。玻色、泡利、费米和其他几个人。结果表明,自然界在分子、原子和亚原子尺度上按照量子力学定律和原理运行;在日常宏观尺度上则按照经典力学运行。在原子和亚原子尺度上,物质的行为方式与我们日常经验完全相反,但量子力学的预测已被非常仔细和极其精确的实验证明是正确的。所有这些的顶峰就是粒子物理学的标准模型,它似乎解释了我们迄今为止在原子或亚原子领域观察到的一切。通过大量物理学家的持续和杰出贡献,还确定了单个原子和分子在聚集形成宏观系统(如我们熟悉的各种材料)时显然会失去其“个体量子特征”。
摘要:仅依靠风和太阳能生成的最低成本电力系统的程式化的宏观尺度能量模型用于评估与连续的美国以及四个地理位置多样化的美国负载载荷区域的不同存储技术的价值。对于连续的美国系统,以当前成本,当仅部署一种存储技术时,氢能存储产生了最低的系统成本,因为其能量容量的成本是所有建模的所有存储技术中最低的。其他假设的存储技术仅在非常低的能源容量成本下比氢(长持续存储)更具竞争力,但它们比相对较高的能量和功率容量成本的锂离子电池(短期存储)更具成本竞争力。在所有调查的负载平衡区域中,包括长期存储在内的最低成本系统具有足够的能量和功率能力,可以满足短期能源和电源存储需求,因此将短期存储添加为第二个存储技术并没有显着降低总系统成本。因此,在依靠风和太阳生成的电力系统中,取决于社会和地理限制,长期存储可能会成本效益提供服务,否则这些服务将由较短的持续时间存储技术提供。关键字:最低成本的电力系统,能源储能技术,风发电,太阳能生成,脱碳化电力系统■简介
alpes,ltm,Grenoble F-38054,法国 * erwine.pargon@cea.fr,Univ。Grenoble Alpes,CNRS,LTM,17 Rue des Mardyrs,38054 Cedex 09法国Grenoble,法国摘要摘要本研究提出了通过在上衣的室内饮用量的策略,该策略通过与上衣相结合的室友eTch fat Chip Chore to Chore Choh toper fore the toper the toper fore the notch facking Koh weats face face face the the gan支柱。的确,KOH溶液中的gan蚀刻是一个各向异性过程,这意味着它允许在宏观尺度上出现稳定的面,而原子过程(例如踩踏)驱动湿蚀刻的基本机制在微观尺度上驱动湿蚀刻的基本机制。我们的研究强调了形状(圆形或六角形,与M平板或A平板对齐)的关键作用,以及硬面膜在确定所得的结晶刻面形成及其相关的粗糙度方面的粗糙度。此外,它强调了等离子体图案后的GAN支柱剖面(重入,直,锥形)的重要性,因为它们会强烈影响随后的湿蚀刻机制。最终,该文章证明,可以通过在等离子蚀刻后在略微倾斜的GAN曲线上使用室温湿KOH(44 wt%)来实现平滑的M型面,并结合使用六边形M的Masks。
摘要:磷酸激光(PL)玻璃的加工(研磨,抛光)涉及在两个截然不同(空间)尺度上的材料去除。在这项研究中,通过在干燥和潮湿的条件下针对SIO 2反地面摩擦玻璃来研究PL玻璃的纳米和宏观文献特性。结果表明,PL玻璃/SIO 2对的摩擦在纳米和宏观尺度上具有相反的趋势。在纳米级,潮湿空气中的摩擦系数(COF)远高于干燥空气中,这归因于界面吸收的水膜的毛细血管效应。另一方面,在宏观上,潮湿空气中的COF低于干空气,因为与水相关的机械化学磨损使磨损的表面不太容易受到裂纹的影响。在两个尺度上,潮湿的空气比干空气更好地促进了PL玻璃的材料,因为应力增强的水解加速了玻璃中的材料解释过程。此外,材料被拆卸对宏观上的接触压力更为敏感,因为在宏观上拆除材料时会发生更强的机械相互作用,并具有多覆盖触点模式。在宏观上,与干空气相比,材料去除对潮湿空气中的接触压力更敏感。几乎所有的机械能都用于去除潮湿的空气中的材料,并且大多数机械能用于在干空气中的PL玻璃中产生裂缝。这项研究的结果可以帮助优化光眼镜的多尺度表面处理。关键字:磷酸盐玻璃;摩擦;穿;水;水解;跨化学
南部海洋冰范围最近发生的严重波动要求迫切需要更好地了解海冰内发生的季节性物理和生物地球化学(BGC)过程。海冰受到温度,风模式和海洋盐度等多种环境因素的影响。海冰微观结构是高度复杂的,由固体冰基质和液体间质盐水夹杂物组成。微生物群落发现盐水夹杂物营养丰富的栖息地,可在冬季恶劣的冬季生长和生存。微生物群落的生长或光合速率取决于各种环境因素,例如温度,阳光,盐水盐度和养分的可用性。虽然卫星观测和大规模建模为大规模(> 1 km)的这些过程提供了更好的了解,但仍然存在差距,这在小规模过程(如冰冻及其耦合到生物地球化学)等小型过程的确切时间描述中仍然存在差距。在本文中,在宏观(≈1m)上开发了多孔介质(ETPM)的数学框架(ETPM)对热力学一致的冻结过程的建模。在1D微观(≈0.1mm)模型上解析了孔和树突状模式的形成,并将孔面积升级到宏观尺度上,以调节冰的生长速率。藻类生长是使用N-P单一营养素和浮游植物(N-P)生长模型的模型。当前的工作与参考文献更进一步。[1],通过微观质量分数和盐水之间的微观质量交换改进,通过部分微分方程对散装盐度演变的描述,以及用于初级生产和营养动力学的普通微分方程。
因此,量子特性对于各种各样的主题都很有趣,例如量子化学计算,特别是在天体化学[4]、量子计算机[5]、量子存储器[6]、加密[7, 8]、量子发光装置[9],甚至全球规模的量子通信[10]。在例子中,混合材料在不同尺度上产生了不同的影响,量子特性的产生从亚原子尺度到宏观尺度及更远。因此,应该强调在更短尺度上发展的重要性,包括用于量子存储器的硅中单个高自旋核的相干电控制[11]和可能影响量子信息处理[12]、宏观物体的检测和分辨[13]的量子态干涉。这些量子应用使用了不同的理论模型,例如量子粒子、光子和量子态,此外还有多学科领域,这些领域推动了量子光学、纳米光学、微电路和更高宏观尺度的光学设计和工程的发展。在这里,石墨烯和碳的同素异形体可以根据凝聚电子物质 [14] 与自由电子轨道 [15] 以及可用的伪电磁特性等特性以不同的方式参与。因此,由小原子厚度形成的石墨烯表现出稳定的化学结构和具有半金属特性的薄膜。它们微小的重叠价带和导带表现出强烈的双极电场效应,例如当电压门控增加时,每平方厘米中电子和空穴的浓度很高,并且在室温下具有迁移率 [16]。这些特性基于特定的电子 sp2 轨道,这些轨道可以在约 0.335 nm 的自由间隔长度内相互作用,产生伪
许多手术任务需要总刀具运动,其中工具的移动和定位在宏观尺度(约1厘米)的精度上;例如,将工具插入套筒,交换工具,清洁工具。也存在主要需要这种宏观动作的程序,例如,将安装在机器人上的超声扫描仪移动[1]和牙齿辅助[2]。传统的手术机器人,例如DA Vinci手术系统(Intuitive Surgical,USA),不可用的背态被动被动机制作为工具持有人,并允许外科医生将工具固定。这样的被动机器人可以限制外科医生使其简单而准确的总工具移动的能力,尤其是对于沉重而笨重的工具。作为替代方案,更新的特定和通用宏机器人使用主动的串行机器人和控制器,使外科医生可以手工指导工具。例如,Mako Robot-Arms(美国Stryker)进行膝盖手术,允许手动引导并限制外科医生沿预先计划的手术路径的运动,以确保安全性和准确性。除了这种干预特定的机器人之外,市场上还有通用医学宏观机器人,可以安全的物理人类机器人互动(PHRI),例如,Kuka LBR IIWA Med(Kuka ag ag,kuka ag,德国奥格斯堡,德国)。可以在此类机器人上安装不同的工具;例如,在Laserosteothome [3]中,使用超声扫描[1]和放射治疗[4]。但是,其他针对PHRI安全的宏机器人也用于外科应用研究中;例如,熊猫(德国弗兰卡·埃米卡(Franka Emika))进行牙科辅助[2]和中耳手术[5]或UR 5(UR 5(UNI-VERSAL ROBOTS,丹麦))进行针插入[6]。