法国海洋舰队中的最新水下系统Ariane是一种混合动力ROV,旨在在沿海地区的勘探和干预方面满足新需求,深度为2500m。于2010年启动,这种新系统的开发是由环境政策变化的强烈动机。受保护的海洋地区的兴起以及在2008年建立诸如海洋战略框架指令之类的欧洲指令,导致了新的科学计划,用于分析和监测水下生态系统。基于创新的混合概念,Ariane旨在从各种轻型容器中运行,而没有动态定位功能,作为关键的促使科学界的要求,并符合严格的预算限制。经过6年的开发和技术海洋试验,Ariane于2017年初被委托参加了科学巡游的开幕周期。到2018年底,该系统总共进行了130次潜水,涵盖了代表性的操作小组,并突出了许多创新功能。
20 世纪 30 年代末,已有数架飞机使用液压执行器实现端到端定位功能(起落架的伸展/收起、襟翼的展开/收起、发动机整流罩襟翼的打开/关闭)或轮毂制动的力传递功能(见第 1 卷 [MAR 16b] 中的图 1.7)。对于主要飞行控制装置,还安装了液压执行器以及将飞行员动作传递到移动表面的电缆控制装置。这样,当自动驾驶仪启动时,就可以由自动驾驶仪施加飞行控制面位置设定点(见第 1 卷 [MAR 16b] 中的图 1.8)。由于飞机尺寸、速度和飞行时间的增加,降低飞行员对主要飞行控制装置产生的力变得至关重要。引入与飞行控制面偏转方向相反的翼片,无需使用机载动力源即可为飞行员提供帮助:在受到空气动力作用时,翼片会产生偏转力矩,使飞行控制面朝着预期的运动方向。这一概念的应用导致了几种变体 [LAL 02、ROS 00]:
20 世纪 30 年代末,已有多种飞机使用液压执行器实现端到端定位功能(起落架的伸展/收起、襟翼的展开/收起、发动机整流罩襟翼的打开/关闭)或机轮制动的力传递功能(见第 1 卷 [MAR 16b] 中的图 1.7)。对于主要飞行控制装置,还安装了液压执行器以及将飞行员动作传递到移动表面的电缆控制装置。这样,自动驾驶仪启动时就可以设定飞行控制面位置(见第 1 卷 [MAR 16b] 中的图 1.8)。由于飞机尺寸、速度和飞行时间的增加,降低飞行员为主要飞行控制装置产生的力量水平的需求迅速变得至关重要。引入与飞行控制面偏转方向相反的翼片,无需使用机载动力源即可为飞行员提供帮助:在受到空气动力作用时,翼片会产生偏转力矩,使飞行控制面朝着预期的运动方向。这一概念的应用导致了几种变体 [LAL 02、ROS 00]:
大语言模型(LLM)可以调用各种工具和API来完成复杂的任务。作为最强大和最通用的工具,计算机可能会由训练有素的LLM代理控制。由计算机提供动力,我们可以希望建立一个更广泛的代理,以帮助人类进行各种日常数字作品。在本文中,我们为视觉语言模型(VLM)代理构建了一个环境,以与真实的compoter屏幕交互。在此环境中,代理可以通过输出鼠标和键盘操作来观察屏幕截图并操纵图形用户界面(GUI)。我们还设计了一个自动控制管道,其中包括计划,表演和反映阶段,指导代理商与环境不断互动并完成多步骤任务。此外,我们构建了Screena-Gent数据集,该数据集在完成每日计算机任务时会收集屏幕截图和计算序列。最后,我们培训了一个模型,即Crabitagent,该模型可以达到与GPT-4V的可比计算机控制能力,并展示了更精确的UI定位功能。我们的尝试可以进一步研究建立通才LLM代理商。代码和更详细的信息在https://github.com/niuzaisheng/screenagent上。
20 世纪 30 年代末,已有多种飞机使用液压执行器实现端到端定位功能(起落架的伸展/收起、襟翼的展开/收起、发动机整流罩襟翼的打开/关闭)或用于机轮制动的力传递功能(见第 1 卷 [MAR 16b] 中的图 1.7)。对于主要飞行控制装置,还安装了液压执行器以及将飞行员动作传递到移动表面的电缆控制装置。这样,自动驾驶仪启动时就可以设定飞行控制面位置(见第 1 卷 [MAR 16b] 中的图 1.8)。由于飞机尺寸、速度和飞行时间的增加,降低飞行员为主要飞行控制装置产生的力量水平变得至关重要。引入了与飞行控制面偏转方向相反的翼片,无需使用机载动力源即可为飞行员提供帮助:在受到空气动力作用时,翼片会产生偏转力矩,使飞行控制面朝着预期的运动方向。这一概念的应用导致了几种变体 [LAL 02、ROS 00]:
摘要 - 本地化是自动驾驶汽车系统的基本要求。自动驾驶汽车定位的最常使用的系统之一是全球定位系统(GPS)。然而,GPS的功能在很大程度上取决于卫星的可用性,这在某些情况下使其不可靠。因此,自动驾驶汽车必须具有自主的自定位功能,以确保其独立运行。探针技术来实现车辆定位。探光仪中采用的一种方法称为车轮频谱。车轮的探光法对周围环境的依赖程度较低,而不是视觉探光和激光探光仪。本研究旨在评估在本地化过程的背景下,自主轮椅的车轮频能测定法实现的性能。采用差分驱动运动模型来确定轮椅的预测姿势。该预测是从轮椅的线性和角速度的测量得出的。已经进行了几项实验,以评估基于车轮的定位的性能。在实验之前,还进行了校准程序,以确保对传感器的准确测量。
20 世纪 30 年代末,已有多种飞机使用液压执行器实现端到端定位功能(起落架的伸展/收起、襟翼的展开/收起、发动机整流罩襟翼的打开/关闭)或用于机轮制动的力传递功能(见第 1 卷 [MAR 16b] 中的图 1.7)。对于主要飞行控制装置,还安装了液压执行器以及将飞行员动作传递到移动表面的电缆控制装置。这样,自动驾驶仪启动时就可以设定飞行控制面位置(见第 1 卷 [MAR 16b] 中的图 1.8)。由于飞机尺寸、速度和飞行时间的增加,降低飞行员为主要飞行控制装置产生的力量水平变得至关重要。引入了与飞行控制面偏转方向相反的翼片,无需使用机载动力源即可为飞行员提供帮助:在受到空气动力作用时,翼片会产生偏转力矩,使飞行控制面朝着预期的运动方向。这一概念的应用导致了几种变体 [LAL 02、ROS 00]:
20 世纪 30 年代末,已有多种飞机使用液压执行器实现端到端定位功能(起落架的伸展/收起、襟翼的展开/收起、发动机整流罩襟翼的打开/关闭)或用于机轮制动的力传递功能(见第 1 卷 [MAR 16b] 中的图 1.7)。对于主要飞行控制装置,还安装了液压执行器以及将飞行员动作传递到移动表面的电缆控制装置。这样,自动驾驶仪启动时就可以设定飞行控制面位置(见第 1 卷 [MAR 16b] 中的图 1.8)。由于飞机尺寸、速度和飞行时间的增加,降低飞行员为主要飞行控制装置产生的力量水平变得至关重要。引入了与飞行控制面偏转方向相反的翼片,无需使用机载动力源即可为飞行员提供帮助:在受到空气动力作用时,翼片会产生偏转力矩,使飞行控制面朝着预期的运动方向。这一概念的应用导致了几种变体 [LAL 02、ROS 00]:
摘要 — 近年来,室内定位系统 (IPS) 受到了机器人、导航、人机交互等许多研究领域的关注。然而,基于无源射频 (PRF) 技术的 IPS 仍然很少见。本文提出了一种基于接收信号强度 (RSS) 分布和高斯过程回归 (GPR) 的三维 (3D) IPS。传统的基于 RSS 的定位系统具有已知频率的发射器,而在提出的 PRf 机会信号 - 3D IPS (PRO-3DIPS) 中,系统既不部署新的发射器,也不使用任何发射器的先验知识。此外,PRO-3DIPS 集成了多个机会信号 (SoOP) 源、阴影、衰落,还可以捕获场景特征。在 3D 空间中基于 PRF 的 RSS 分布的数据收集和分析实现了 3D 定位功能。应用并比较了三种方法,以找到受场景影响最大的频带,以实现最佳定位性能,并用于估计 RSS 分布。 RSS 分布是通过在场景中测量固定网格上的 PRF 频谱来估计的。利用 RSS 分布,GPR 可以精确定位接收器位置。在实验场景中收集了 90 个网格位置的 RSS,每个位置有 100 个样本。实验结果表明,当
自 20 世纪 90 年代末以来,视觉诱发场 (VEF) 已在临床实践中得到可靠应用。这是定制枕叶皮质手术切除术的标准临床工具。1 2011 年,美国临床脑磁图学会 (ACMEGS) 发布了临床实践指南 (CPG),详细介绍了自发性脑活动分析、使用诱发场进行术前功能性脑映射、脑磁图 (MEG) 报告以及 MEG 人员的资质。 2 – 5 最近,ACMEGS 发表了第二份立场声明,详细说明了 MEG 作为一种非侵入性诊断工具在术前映射功能皮质中的价值,并支持“在对准备手术的可手术病变患者进行术前评估时,MEG 可常规临床用于获取有关功能皮质(体感、运动、视觉、听觉和语言)的非侵入性定位或侧向信息。” 6 尽管映射功能皮质的“黄金标准”是通过直接皮质刺激,但 MEG 作为一种非侵入性诊断工具已证实其在识别这些区域方面的有效性。1 – 3,6 本文将重点介绍 MEG 在定位功能视觉皮层中的实用性。本文将首先概述 VEF 在临床实践中的当前临床作用。然后,将回顾 2011 年 ACMEGS CPG 发布后的最新研究和临床发展。最后,