多年来,人工智能 (AI) 一直是教育的一部分,但自 2022 年 11 月发布 ChatGPT 以来,生成式 AI 的引入使 AI 成为有关教育未来的讨论焦点。此次发布以及随后的许多其他生成式 AI 工具引起了教育工作者和学生对这些技术使用的兴趣,同时也引发了对其滥用的担忧。生成式 AI 工具是一种人工智能工具,可根据其在训练数据集中学到的内容生成文本、图像、音频、视频和代码。当用户向模型提供提示时,该模型会预测响应。虽然每个响应都是新的,但模型会从训练阶段分析的数据中提取数据,并根据用户输入或提示将其转换为响应。生成式人工智能最近以前所未有的速度迅速发展,速度之快超过了历史上任何其他技术创新。事实上,一些技术专家预计,未来十年的技术创新将比过去一百年更多。生成式人工智能工具的接受和使用是不可避免的,企业和高等教育机构将期望我们的学生具备生成式人工智能技能。因此,公立学校处理生成式人工智能的方式对教育的未来和今天的学生都有着重大影响。为了帮助指导国家学校领导者负责任地实施人工智能,美国教育部教育技术办公室最近发布了一份题为“人工智能与教学和学习的未来”的报告。本报告引用了 Russell Shilling 博士的话:“人工智能将教育技术带到了一个转折点。我们可以扩大差距,也可以缩小差距,这取决于我们现在采取的行动。”事实上,我们在公立学校使用生成式人工智能的决定将对我们的学生进入高等教育机构或就业市场的未来以及他们的日常生活产生重大影响。世界经济论坛的《2023 年未来就业报告》预测,人工智能将在未来五年对就业市场产生巨大影响。在本报告中,人工智能和机器学习领域是预测最快的领域,未来五年的增长轨迹高达 40%,预计将创造 100 万个新工作岗位。此外,报告发现,75% 的受访公司计划在 2027 年前实施生成式人工智能。
摘要本文的特定目的在于:为材料科学、化学或电子学等领域的读者提供利用其材料系统实施储层计算 (RC) 实验的概述。关于该主题的介绍性文献很少,绝大多数评论都提出了 RC 的基本概念,这些概念对于不熟悉机器学习领域的人来说可能并不简单(例如,参见参考文献 Lukoˇseviˇcius (2012 Neural Networks: Tricks of the Trade (Berlin: Springer) pp 659–686)。考虑到大量表现出非线性行为和短期记忆的材料系统可用于设计新颖的计算范式,这是令人遗憾的。RC 提供了一个使用材料系统进行计算的框架,该框架可以避免在硬件上实现传统的、功能齐全的前馈神经网络时出现的典型问题,例如最小的设备间变异性以及对每个单元/神经元和连接的控制。相反,可以使用随机的、未经训练的储存器,其中仅优化输出层,例如使用线性回归。在下文中,我们将重点介绍 RC 在基于硬件的神经网络中的潜力,以及相对于更传统的方法,以及在实施过程中需要克服的障碍。准备一个高维非线性系统作为特定任务的高性能储存器并不像乍看起来那么容易。我们希望本教程能够降低科学家试图利用他们的非线性系统进行通常在机器学习和人工智能领域执行的计算任务的障碍。与本文配套的模拟工具可在线获取 7 。
1)农业 2)食品工业 3)石油和天然气工业 4)采矿业 5)冶金业 6)机械工程 7)化学工业 8)轻工业 9)其他工业 10)建筑业 11)电力和公用事业 12)贸易 13)餐饮业 14)保险业 15)银行业 16)运输和物流业 17)电信业 18)信息技术 19)制药业 20)媒体和娱乐业 21)旅游和旅行 22)医疗保健 23)教育 24)公共部门 25)国防工业
虽然我们总体上支持多方利益相关者的方法,使行业能够参与起草过程,但《人工智能法案》次级立法(例如指南和通用人工智能 (GPAI) 行为准则)的审议速度过快,限制了利益相关者提供有意义意见的能力。这种方法不成比例地使大型、资源丰富的公司受益,而将较小的欧洲创新者排除在外。欧洲公司必须有机会参与直接影响其投资和创新能力的标准制定过程。鉴于这些准则和指南草案的技术性和详细性,利益相关者需要合理且相称的时间来做出回应。例如,我们建议将 GPAI 行为准则 V2 的反馈截止日期延长至 2025 年 1 月下旬。此外,根据需要更新每轮磋商的暂定时间表将有助于企业有效地分配资源。最后,我们鼓励委员会进一步加强人工智能办公室,提高其有效管理这些流程的能力。
这些材料是初步的、非详尽的,仅供参考,以非排他性方式提供,以响应在 K-12 教育中实施人工智能的考虑需求。这些材料反映了一般见解,并可能根据当前可用的信息提出潜在的考虑选项,这些信息本质上是不确定的,可能会发生变化,但不包含确定未来行动方针所需的所有信息。这些材料中包含的见解和概念尚未经过验证或独立核实。对特定产品或组织的引用仅供说明,并不构成任何认可或推荐。这些材料不构成,也不应被解释为政策、会计、法律、医疗、税务或其他受监管的建议,或对任何特定行动方针的建议。这些材料不是结果的保证,不能依赖。未来结果可能与任何预期、预测或预测的陈述存在重大差异。鉴于技术发展日新月异,这些材料“按原样”提供,不作任何陈述或保证,并且明确声明对任何损失或损害不承担任何责任。接收方对其所有决定、使用这些材料以及遵守适用法律、法规和规定负全部责任。在采取任何具体步骤之前,请考虑寻求法律和其他相关认证/许可专家的建议。
最近,密集的潜在变量模型已显示出令人鼓舞的结果,但是它们的分布式和潜在的代码使它们降低了易于解释,并且对噪声的影响较低。另一方面,稀疏表示更为简约,提供了更好的解释性和噪声稳健性,但是由于涉及的复杂性和计算成本,很难实现稀疏性。在此过程中,我们提出了一种新颖的无监督学习方法,以利用逐渐稀疏的尖峰和平板分布作为我们的先验,以在发电机模型的潜在空间上强化稀疏性。我们的模型由自上而下的发电网络组成,该网络将潜在变量映射到观测值。我们使用最大似然采样来推断发电机后方向的潜在变量,并且推理阶段的尖峰和平板正则化可以通过将非信息性潜在维度推动到零来引起稀疏性。我们的实验表明,学到的稀疏潜在表示保留了大多数信息,我们的模型可以学习解开的语义,并赋予潜在代码的解释性,并增强分类和denosing任务的鲁棒性。
这些材料是初步的、非详尽的,仅以非排他性方式提供,以响应在州教育机构 (SEA) 实施 AI 的考虑需求,仅供参考。这些材料反映了一般见解,可能根据当前可用的信息提出潜在的考虑选项,这些信息本质上是不确定的,可能会发生变化,但不包含确定未来行动方针所需的所有信息。这些材料中包含的见解和概念尚未经过验证或独立核实。对特定产品或组织的引用仅用于说明,不构成任何认可或推荐。这些材料不构成,也不应被解释为政策、会计、法律、医疗、税收或其他受监管的建议,或对任何特定行动方针的建议。这些材料不是结果的保证,不能依赖。未来结果可能与任何预期、预测或预计存在重大差异。特别是鉴于技术发展迅速,这些材料“按原样”提供,不作任何陈述或保证,并且明确声明对任何类型的损失或损害不承担任何责任。接收方对其所有决定、使用这些材料以及遵守适用法律、法规和规定负全部责任。在采取任何具体步骤之前,请考虑寻求法律和其他相关认证/许可专家的建议。
因此,该协会将与其整个网络一起,每年为参与打击和预防 VSS 的军事和民事人员提供培训模块。这些培训课程的目的主要是提高VSS事件的检测和管理能力,更好地了解受害者的定位并掌握适用的法律和司法框架。所有受此措施覆盖的人员必须在 2026 年底前接受初始培训模块。
健康与安全结果(表中的第一行)反映了受访者的整体态度,是对四个单独陈述的回应的平均值。绿色带表示受访者同意该声明,灰色带表示他们既不同意或不同意该陈述(中性响应),橙色带表示受访者不同意该陈述。在所有情况下,大学都低于加拿大工业基准4以下。下一次参与调查将在2025年日历年进行。这将与实施护理倡议的实施一致,并为大学提供有关护理文化是否改善工人的健康和安全态度和实践的评估。
