消费级神经技术产品已经问世几十年了。这些产品中的大多数都基于脑电图 (EEG),而脑电图 (EEG) 是一项对噪声敏感的技术。另一种选择是功能性近红外光谱 (fNIRS),这是一种不断发展的神经成像技术,能够实时测量大脑的血流动力学活动。FNIRS 已成功通过功能性磁共振成像 (fMRI) 验证。最近,瑞典公司 Mendi 推出了一款微型无线消费级 fNIRS。本研究旨在比较 Mendi fNIRS 与成熟的实验室 fNIRS 设备对大脑活动的测量结果。19 名参与者(年龄 18-53 岁)进行了两次 Stroop 测试,同时测量了额极(布罗德曼 10 区)的氧合情况。首先,在实验室环境中使用 Biopac 的 fNIRS 设备进行测试,几周后,在家庭环境中使用 Mendi 设备重复该测试。对数据的初步分析显示,两种设备的测量结果具有良好的一致性。在群体层面,相关性为 0.81。这些中期结果需要通过更可靠的分析和后续研究来证实,但 Mendi 设备有望在群体层面提供有效的大脑活动测量,并且该设备很可能用于实验室外的研究。
自 1960 年代以来,人们使用了各种趋化性测定方法,但这些测定方法都存在很大的局限性。Transwell 测定方法技术简单且应用广泛;将装有细胞的多孔插入物放置在装有引诱剂的孔内,(一旦通过扩散建立起浓度梯度)细胞就会通过微米大小的孔迁移到孔中,通过取出插入物并计数孔中的细胞来量化趋化性。[5] xCEL-Ligence 测定方法提供了一项重大技术进步;当细胞穿过改良的 Boyden 室中的孔时,可以实时测量阻抗变化。[6] 为了解决 Transwell 测定方法的一些局限性,人们引入了替代方法,包括跟踪和监测单个细胞(如 Dunn 室)[7] 以及检测细胞可逆性或细胞趋向性(如琼脂糖下迁移测定方法)。 [8] 最近,人们开发出了微流控系统 [9],该系统能够控制稳定的梯度,[10] 区分不同类型的运动(例如,趋化性、化学运动——无方向性细胞迁移和逃逸性 [11] ),实时追踪单个细胞,[12] 并提高吞吐量 [13]——有时不需要太多依赖专门的设备即可实现。 [14] 虽然微流控方法前景广阔,但它们在生物医学研究中的应用受到了阻碍,因为操作设备所需的技术复杂性、制造和原型制作时间长、经常使用的塑料的生物相容性问题(即聚二甲基硅氧烷、
使用镍的几秒极端紫外线(XUV)瞬态吸收光谱在镍M 2、3边缘进行镍中光激发载体动力学的直接测量。可以观察到,可以通过高斯拓宽(σ)和地面吸收光谱的高斯拓宽(σ)和红移(ωs)来描述光激发镍的核心水平吸收线形状。理论预测,实验结果证明,在初始快速载体热化后,电子温度升高(t)与高斯拓宽因子σ呈线性成正比,从而提供了电子温度松弛的定量实时跟踪。测量结果揭示了50 nm厚的多晶镍纤维的电子冷却时间,为640±80 fs。使用热热载体,光谱红移与电子温度变化ωs∝T 1具有幂律关系。5。通过载流子散射的快速电子热化伴随并遵循标称的4-FS光激发脉冲,直到载体达到二硫代平衡为止。与<6 FS仪器响应函数结合在一起,从在不同泵浦流动下获取的实验数据中估算了从34 fs到13 fs的载体热化时间,并且观察到电子热化时间随着泵的增加而降低。该研究提供了一个初始示例,即用XUV光实时测量金属中的电子温度和热化,并为在具有核心水平吸收光谱的金属中进一步研究光诱导的相变和载体传输的基础。
弥漫性中线胶质瘤 (DMG) 是儿童和年轻人中最具侵袭性的脑肿瘤,有记录的 2 年生存率 < 10%。治疗失败部分归因于 BBB 的功能。肿瘤内微透析取样是确定各种药物进入大脑的有效工具,有助于更好地了解药物渗透性与 DMG 治疗反应之间的关系。这是一项非随机、单中心、1 期临床试验。最多将招募 7 名患有复发性高级别或弥漫性中线胶质瘤的年轻成人 (18-39 岁) 患者,目标是 5 名患者在预计的 24 个月内完成试验。所有患者将在术前服用 abemaciclib 4.5 天,每天两次。患者将接受切除或活检、置入微透析导管以及 48 小时透析液取样和定时血浆采集。如果肿瘤内肿瘤或脑透析液采样浓度 > 10nmol/L,或肿瘤组织研究表明 CDK 抑制,则将重新开始 abemaci-clib 治疗以及替莫唑胺进行维持治疗,并在出现放射学或临床疾病进展的证据时停止治疗。弥漫性中线胶质瘤的低生存率凸显了需要改进方法来评估药物输送到肿瘤和肿瘤周围组织的疗效。这项新颖研究的结果将提供 BBB 功能的实时测量,这有可能影响这种致命疾病未来的预后和诊断决策,而这种疾病的治疗选择有限。试验注册:Clinicaltrials.gov,NCT05413304。2022 年 6 月 10 日注册,使用肿瘤内微透析的 Abema-ciclib 对弥漫性中线胶质瘤进行神经药代动力学研究。
在这项研究中,开发了用于踩踏过程中定量动态拟合的实时评估系统。该系统由LED标记,连接到计算机的数码相机和标记检测程序。LED标记附着在矢状面上的臀部,膝盖,踝关节和第五元。PlayStation3 Eye被选为本文中的主要数码相机具有许多使用运动捕获的优点,例如高FPS(每秒帧)约180fps,320×240分辨率和易于使用的低成本。制造商检测程序是通过将LabView2010与Vision Builder一起使用的。该程序由三个部分组成:图像采集和处理,标记检测和关节角度计算以及输出部分。数码相机的映像是在95FPS中获取的,并且设置了程序以实时测量较低的接头角度,以将用户作为图形提供,并允许将其保存为测试文件。通过使用Holmes方法在每个马鞍高度下在每个马鞍高度处进行三个鞍高度(膝盖角:25、35、45 O)和三个节奏(30、60、90 rpm)的踩踏板验证系统,这是一种测量下肢角度的方法,以确定鞍高的高度。结果显示,系统的平均误差和强相关性,分别是1.18±0.44 o,0.99±0.01 o。由于马鞍高度的变化,几乎没有错误,但节制发生了绝对错误。考虑到平均误差约为1°,它是用于定量动态拟合评估的合适系统。在未来的研究中,必须使用两个具有额叶和矢状平面的数码相机来减少误差。
血液中高水平的氨水可能导致无意识和抽搐,这使其成为危险空气污染的主要例子。我们环境中某些气体的存在可能会令人不安。鉴于这些问题,我们提出了一种当代设计和开发异常敏感的氨气传感器的方法。该传感器利用由单模纤维(SMF),光子晶体纤维(PCF)和SMF组成的底物来创建Mach-Zehnder干涉仪(MZI)。感应机制涉及固定AU和GO纳米复合材料。在此设置中,SMF和固体晶体纤维之间的干扰区域会产生一个塌陷区,该区域可用于激发PCF的核心和覆层模式。这种创新技术确保了非常快速的响应和恢复时间。这项研究中展示的可重复使用的探针具有实现快速,高度准确且可重复可重复的超级氨检测的巨大潜力。这引入了进行在线测量和环境监测的新颖途径。SMF和固体晶体特色纤维的交点会产生一个有效激发PCF的核心和覆层模式的塌陷区域,从而导致了承诺的快速响应和恢复时间。可重复使用的探针表现出能力迅速检测到氨的超级量,并具有良好的选择性,并具有良好的选择性,并具有良好的选择性,并具有良好的特征,并提高了18.6的敏感性和敏感性。关键字:氧化石墨烯,干涉仪,氨,气体传感器这一开发为环境监测和实时测量提供了新的可能性,从而改善了对周围环境的见解。
在本文中,我们首次对基于游戏的干预措施在降低学生数学焦虑水平方面的有效性进行了荟萃分析。在对与基于游戏的数学焦虑干预相关的随机研究进行搜索后,11 篇同行评审文章中描述的 16 个效应大小(共 686 名参与者)符合选择标准。随机效应荟萃分析表明,数学焦虑的降低幅度很小且不显著(平均效应大小 𝐸𝑆 = −0. 32 , 𝐶𝐼 = [−0. 64 , 0. 01] )。结果受到几个因素的调节:非数字游戏更有效,而数字游戏的平均效应大小可忽略不计,为 𝐸𝑆 = −0. 13 , 𝐶𝐼 = [−0. 33 , 0. 08] 。效果大小还受到干预总时长(干预时间越长越有利)和游戏类型的影响:当游戏促进协作和社交互动时,它们对减轻数学焦虑的效果更大。这些特点只存在于非数字游戏中,而所分析的所有数字游戏都是单人游戏。在论文的最后一部分,我们讨论了未来可能的研究方向。获得的薄弱结果表明需要开发和测试专门为数学焦虑学生设计的游戏。这将需要通过分析焦虑和非焦虑学生在游戏中的行为来研究游戏功能与数学焦虑之间的关系。在焦虑意识游戏可以采用的功能中,我们建议采用协作游戏、社交互动、适应性、促进内在动机的功能和嵌入数学焦虑的实时测量。
异常激活的激酶信号通路驱动髓母细胞瘤 (MB) 的侵袭和播散。大多数促肿瘤激酶信号通路都参与丝裂原活化蛋白激酶 (MAPK) 细胞外调节激酶 (ERK1/2) 通路。MB 细胞侵袭过程中 ERK1/2 的激活状态尚不清楚,其在侵袭控制中的作用尚不清楚。我们为 MB 细胞中的 MAPK ERK1/2 通路建立了一种合成激酶活化重定位传感器 (SKARS),用于实时测量药物反应。我们使用 3D 侵袭试验和器官型小脑切片培养来测试生理相关组织环境中的药物效果。我们发现肝细胞生长因子 (HGF)、表皮生长因子 (EGF) 或碱性成纤维细胞生长因子 (bFGF) 导致 MB 细胞中核 ERK1/2 快速激活,这种激活持续数小时。与 BCR/ABL 激酶抑制剂达沙替尼同时治疗可完全抑制由 HGF 和 EGF 诱导的核 ERK1/2 活性,但不能抑制由 bFGF 诱导的核 ERK1/2 活性。核 ERK1/2 活性增加与侵袭速度呈正相关。达沙替尼阻断了大多数细胞中的 ERK 相关侵袭,但我们也观察到 ERK1/2 活性低的快速侵袭细胞。这些 ERK1/2 低、快速移动的细胞呈现圆形形态,而 ERK 高、快速移动的细胞呈现间充质形态。达沙替尼有效阻断了 EGF 诱导的增殖,但仅适度抑制组织侵袭,这表明一部分细胞可能通过非间充质运动逃避达沙替尼的侵袭抑制。因此,生长因子诱导的 ERK1/2 核活化与 MB 细胞中的间充质运动和增殖有关,并且可以通过 BCR/ABL 激酶抑制剂达沙替尼阻断。
脑力负荷(CTM)是精神紧张程度的反映,取决于所执行的任务、环境和具体操作条件,以及工人对这些要求做出反应的能力。CTM 分析取决于特定工具或方法的应用,这些工具或方法可能会因应用的具体环境、分析的工人类别、应用国家/地区、资源的可用性和/或工效学家而异。本研究的目的是对用于评估脑力负荷的工具进行批判性分析。为此,我们对电子数据库 ScienceDirect、Scopus 和 Web Of Science 中 2000 年至 2017 年间发表的文章进行了系统的文献综述,其中涉及文献计量分析和所选组合的内容。结果汇编了 85 篇符合研究目标和标准的文章,其中突出显示了作者、期刊、关键词、使用的工具、分析的工作人员以及研究的应用国家。最著名的期刊是“Ergonomics”,发现的主要关键词是“mental load”、“workload”和“NASA-TLX”。在发现的 22 种方法中,最常用的方法是生理测量分析和 NASA-TLX。研究的主要工作人员是卫生部门的工作人员、飞行员和空中交通管制员,其中 35% 的工作是在美国进行的。这22个工具被分为生理测量、表现测量和主观测量,并进一步标记为多维和单维主观测量。生理、表现和一些一维主观测量可以连续、实时测量,跟踪脑力负荷的变化,并且不依赖于参与者的记忆。多维主观测量提供了 CTM 各个维度的诊断,是最常用的工具,在手术后应用,并且不具有侵入性。生理测量的程序更加昂贵和复杂,性能测量可能具有侵入性,单维主观测量仅提供工作量的总体分数,而多维主观测量则具有更长的程序并且依赖于客户的记忆工作者。关键词:精神负荷。Carga cognitiva.绝大多数工具并不局限于国家或适用于工人和工作环境。因此,选择方法的标准取决于工作情况、分析目标和可用资源,建议使用至少两种不同分类的方法,以提高结果的有效性,使分析理想化与三类方法。工作负载。人体工程学。系统审查。
功能性脑活动的准确定位具有希望使我们老龄化社会至关重要的新型治疗和辅助技术。世界人口的老龄化增加了与年龄有关的健康问题的患病率,例如身体伤害,精神障碍和中风,导致对患者,家庭和医疗保健系统的严重后果。新兴技术可以通过(i)提供有效的神经居住以及(ii)实现日常任务独立性来改善患者的生活质量。第一个挑战可以通过设计可以增强特定认知功能或治疗特定精神病/神经病理性的神经调节性接口系统来解决。这种系统可以由实时大脑活动驱动,以使用诸如经颅磁刺激[1、2]或聚焦超声[3,4]等方法选择性地调节特定的神经动力学。第二个挑战可以通过设计有效的脑机界面(BMI)来解决。常见的BMI控制信号依赖于主感觉或运动相关的激活。但是,这些信号仅反映了有限的认知过程。高阶认知信号,尤其是编码面向目标任务的前额叶皮层的高级认知信号,可能会导致更健壮和直观的BMI [5,6]。NeuroRehabicitation和BMI方法都需要一种实时测量和定位功能性脑活动的有效方法。这可以通过脑电图(EEG)[7,8]和MEG [9-11],两种非侵入性电物质技术技术来实现。eeg使用放置在头皮上的一系列电极来记录电压弹性,而MEG使用称为超导量的Quantum-tum干扰装置(Squid)[12]的敏感磁性检测器来测量在EEG中产生电势分布的相同主要电流。由于EEG和MEG捕获了由神经元电流产生的电磁场,因此它们提供了神经元活性的快速直接指数。但是,现有的MEG/EEG来源定位方法提供了有限的空间分辨率,使可以用于神经康复或BMI的信号的起源混淆,或者太慢而无法实时计算。深度学习(DL)[13]提供了一种有希望的新方法,可以实时改善源本地化。越来越多的作品成功地将DL运用到