蛋白XPA在核苷酸切除修复途径中起关键作用。最近的实验工作表明,XPA的功能动力学涉及沿DNA的一维扩散以搜索损伤位点。在这里,我们使用各种盐浓度的广泛的粗粒分子模拟来研究所涉及的动力学过程。结果表明扩散机制的盐浓度依赖性很强。在低盐浓度下,与旋转耦合的一维扩散是主要机制。在高盐浓度下,三维机制的扩散变得更有可能。在较广泛的盐浓度下,涉及DNA结合的残基是相似的,并且沿DNA显示的XPA的一维扩散是降低功能。此亚延伸功能暂定归因于XPA – DNA相互作用的各种强度。另外,我们表明,与DNA的结合和盐浓度升高倾向于拉伸XPA的构象,从而增加了位点的暴露范围,以结合其他修复蛋白。
对于优先级较高的小订单,您的 Mallory 经销商可以为您解忧解难。他可以为您提供库存零件,这些零件可能会让您等上几个月,直到制造商投入生产。当您需要工厂更换、测试或实验工作或战争设备的预生产模型所必需的电子零件时,您当地的 Mallory 经销商将为您服务。您可以依靠他来获得标准的 Mallory 开关、电话插孔和插头、变阻器、电位器、电阻器、电容器、整流器、噪声滤波器、振动器、Vibrapacks* 和其他 Mallory 认可的精密产品。您可以依靠您的 Mallory 经销商获得以下服务 - 为您的采购部门提供快速完整的信息和价格 - 为您的工程和设计部门提供应用数据 - 一份随时可参考的 Mallory 目录副本 我们正尽一切努力在 Mallory 经销商处维持足够的库存,以节省您的时间和麻烦。请致电您当地的 Mallory 经销商。或者,如果您不知道离您最近的 Mallory 经销商 - 请写信给我们,我们会让他与您联系。 *Rep. P. S. Pat. Off。
遗传转化是一个复杂且资源密集型的过程,它是产生GMO(转基因生物)或基因编辑作物的关键瓶颈。1许多研究人员探索了激素和植物发育调节基因来增强植物再生,从而提高了组织培养依赖性遗传转化的效率。2先前,我们开发了无组织培养的“切割浸入”(CDB)方法来进行遗传转化,利用农杆菌根源基因根源诱导和转化来自外植体切割部位的毛根。3遗传转化的植物是从具有芽形成能力的转化的毛根中生长的。CDB方法极大地简化了遗传转化和基因编辑(包括Taraxacum Kok-Saghyz Rodin(TKS))的实验工作流程。在这里,我们通过省略了毛茸茸的根形成过程,在CDB方法中开发了一个极为简化的过程,从而大大节省了人工和时间。
色散工程和高度非线性纳米光子学的出现有望通过将高横向场约束与超短脉冲操作相结合,开辟一条通往量子光学强相互作用领域的全光学途径。然而,要全面了解此类宽带设备中的光子动力学,对多模非高斯量子物理的建模和仿真提出了重大挑战,这凸显了对复杂的简化模型的需求,这些模型有助于进行有效的数值研究,同时提供有用的物理见解。在本文中,我们回顾了我们最近在不同抽象和通用水平上对宽带光学系统建模的努力,从同步泵浦振荡器的量子输入输出理论的多模扩展到基于非线性波导场论描述的数值方法的开发。我们希望我们的工作不仅能指导正在进行的理论和实验工作,以实现下一代量子设备,还能揭示宽带量子光子学的基本物理原理。
岩土工程组是一群土木工程师和环境工程师,他们在土壤力学、环境岩土工程和岩土工程领域非常活跃。我们在土壤力学方面的研究工作涉及天然土壤的机械行为,重点是地质复杂的土壤,这些土壤与意大利各地的山体滑坡现象以及新基础设施的设计密切相关。环境岩土工程研究包括对新岩土材料、受污染土地的安全性、岩土稳定和疏浚材料的再利用的研究。对于上述所有主题,都涉及岩土工程的各个方面。这些包括挡土结构和地基的土-结构相互作用、岩土结构的抗震分析、不连续地面的数值建模、用石灰或水泥进行地面改良、受污染土地的水力屏障设计。实验工作受益于土力学实验室和环境岩土实验室。岩土工程研究的数值分析采用最新的二维和三维数值代码以及先进的土壤本构模型进行。
部门:IFISC(CSIC-UIB) 专业类别:终身科学家 开始日期:2024 年 1 月 1 日 合同类型:公务员 奉献制度:全职 初级(UNESCO 代码):220913 - 非线性光学 次级(UNESCO 代码):220910 - 激光器 第三(UNESCO 代码):120304 - 人工智能 执行的任务:Miguel C. Soriano(Miguel Cornelles Soriano)是西班牙研究理事会的终身科学家 (Científico Titular),他在跨学科物理研究所和综合系统研究所 (IFISC) 开展研究活动。他的研究生涯致力于研究复杂动力系统的基本特性,在理论和实验工作之间取得平衡,并开发受大脑启发的硬件设备。他在 JCR 期刊上合作发表了 91 篇科学出版物,在 Science 网站上被引用 6001 次,H 指数为 31(详情请参阅 http://www.researcherid.com/rid/D-8480-2011 ),在 Google 学术网站上被引用 9347 次,H 指数为 39(详情请参阅 https://scholar.google.com/citations?user=RMlYpeYAAAAJ )。
地球和空间站上已经进行了大量的实验工作,以开发用于长期太空任务的种植食物的方法。5,6 月球和火星基地需要生物再生生命支持系统来实现自给自足的食物生产;否则,它们将成为价值有限的临时前哨,维护成本高昂,并需要不必要的星际旅行和相关风险。维护农作物需要人类进行大量的动手工作,从而减少了探索时间。然而,机器人食品生产现在正在地球上进行,而且,鉴于人工智能的力量,可以对其进行调整以维护火星上的农业模块。探测车可以在着陆点收集冰和土壤。机械臂在可移动的轨道上移动,可以种植、培育和收获可以包装和冷冻的食物,在人类登陆之前储存多年的供应。机器人可以是半独立的,也可以是远程控制的,带有可以轻松拆卸以根据需要连接替换臂的臂座。
色散工程和高度非线性纳米光子学的出现有望通过将高横向场约束与超短脉冲操作相结合,开辟一条通往量子光学强相互作用领域的全光学途径。然而,要全面了解此类宽带设备中的光子动力学,对多模非高斯量子物理的建模和仿真提出了重大挑战,这凸显了对复杂的简化模型的需求,这些模型有助于进行有效的数值研究,同时提供有用的物理见解。在本文中,我们回顾了我们最近在不同抽象和通用水平上对宽带光学系统建模的努力,从同步泵浦振荡器的量子输入输出理论的多模扩展到基于非线性波导场论描述的数值方法的开发。我们希望我们的工作不仅能指导正在进行的理论和实验工作,以实现下一代量子设备,还能揭示宽带量子光子学的基本物理原理。
我在 2018 年新加坡 ICA 研讨会上的演讲讨论了量子计算,这是计算定律和量子力学定律的交汇点。我们描述了一个反对量子计算机可行性的计算复杂性论证:我们确定了一个由嘈杂的中型量子计算机描述的非常低级复杂度的概率分布类,并解释了为什么它既不能实现高质量的量子纠错,也不能证明“量子至上”,即量子计算机能够进行传统计算机无法或极其困难的计算。我们接着描述了从该论点中得出的一般预测,并提出了表明量子计算机失败的一般定律。2019 年 10 月,《自然》杂志发表了一篇论文 [5],描述了谷歌进行的一项实验工作。该论文声称在一台 53 量子比特的量子计算机上展示了量子(计算)至上,这显然挑战了我的理论。在本文中,我将从谷歌的至上主张的角度解释和讨论我的工作。
哈佛大学的 Lukin 团队(Bernien 等人)利用里德堡原子阵列 4 实现了一个 51 量子比特的量子模拟器,避免了这些问题。利用里德堡原子的长寿命和强相互作用,以及巧妙的捕获技巧,他们能够创建一个模拟 Ising 型量子自旋模型的量子材料系统。他们观察到有序态的不同相,这些相破坏了各种离散对称性。此外,尽管这个系统不可积,但他们观察到似乎是非遍历的奇异多体动力学。这暗示了量子多体疤痕的观察。在他们的论文发表后,利兹大学的 Turner 等人发表了一篇理论论文,使用与 Lukin 团队所做的实验工作相同的系统,但使用 L = 32 作为系统大小。他们进一步将实验观察结果解释为由于光谱中的特殊本征态导致的弱遍历性破坏的结果。这类似于混沌非相互作用系统中的量子伤痕。5