1。定义碳中性意味着释放到大气中的任何温室气体(包括但不限于二氧化碳)都通过去除等效量的温室气体平衡。碳抵消了减少排放和追求碳中立性的一种方法,就是通过减少其他地方来抵消一个部门的排放。1碳阳性意味着一项活动超出了实现零碳的排放量,从而通过从大气中去除额外的二氧化碳来创造环境益处。气候风险指数(CRI)表示对极端事件的暴露水平和脆弱性,各国应理解为警告,以便为将来的更频繁和/或更严重的事件做好准备。气候变化是全球或区域天气模式的长期变化。通常,气候变化一词特别指20世纪中叶到现在5的全球温度升高。CO 2等效二氧化碳等效或CO 2等效(又称A.CO 2 eq。)是一种度量度量,用于根据其全球暖势(GWP)比较各种温室气体(GHG)的排放,通过将其他气体与相同的GWP 6相同的其他气体转换为同等量的二氧化碳数量。通常是从摇篮到(工厂)门,摇篮到现场(使用)或摇篮到坟墓(生命的尽头)的测量。分解是将死有机物质分解成简单或无机物质的过程,例如二氧化碳,水,简单的糖和矿物质盐。7的具体碳来自消耗的体现能量,用于提取,精炼,过程,运输和制造材料或产品(包括建筑物)。因此,体现的碳足迹是为了产生材料8而产生的碳(CO 2或CO 2排放)的量(CO 2或CO 2排放)。环境是指社区生活和发展生计的物理,化学和生物学环境。它提供了维持个人的自然资源,并确定了他们所生活的周围环境的质量9。环境影响被定义为对环境的任何变化,无论是不利还是有益10,是由项目,过程,生物体和产品从其构想到生命终结的。环境绩效指数(EPI)是一种量化和数值标记州政策的环境绩效11的方法11。环境可持续性:可以满足环境需求的国家,而无需降低其能力,使所有人现在和将来都能过得良好。虽然环境可持续性比气候行动更广泛,但限制气候和环境影响都可以促进缓解气候变化,例如,通过减少排放和绿化实践,并增强人们对气候变化的韧性12。
挥发至室内空气途径 (VIAP)(即蒸汽侵入)是指挥发性物质从地下介质(土壤、土壤气体和地下水)迁移到上覆结构的室内空气中。VIAP 是一种高度复杂且难解的暴露途径。当存在蒸汽源、迁移路径和人类受体时,该途径是相关的。即使受体目前没有占据某个场地,但可以预期将来会占据,该途径也是相关的。当存在受体并且挥发性物质的浓度高于或可能高于临时行动室内空气筛查水平时,VIAP 会对公共卫生造成重大影响,并且通常短期暴露控制可能需要疏散/重新安置或立即缓解以将浓度降低到可接受的水平。对于地下水(饮用水)污染,可以快速提供替代饮用水供应(例如瓶装水),对于土壤(直接接触)污染,防止接触受污染土壤的措施(例如覆盖、围栏、让儿童远离)是快速可用的缓解措施。在缓解系统完成之前,受污染蒸气影响的建筑物中的居住者可能需要搬迁,以防止吸入危险浓度的挥发性物质。与其他暴露途径一样,可能需要源头控制、清除措施、现场处理或其他响应活动来完成清理,而可能需要采取临时措施来在短期内控制或缓解暴露。
摘要:光照条件对人的表现至关重要。随着基于计算机的学习的广泛使用,表现测量变得困难,而人工照明条件对新学习形式的影响尚未得到广泛研究。本研究在五种照明设置(300 lx,3000 K;300 lx,4000 K;300 lx,6500 K;500 lx,4000 K;1000 lx,4000 K)下进行了一项 45 分钟的在线学习实验,同时进行了基于脑电图(EEG)的测量和事后访谈。选择注意力作为代表学习表现的关键因素。结果表明,20 多岁人群的注意力不受实验照明条件的影响。结果还表明,尽管感到不适和不满意,但在 1000 lx 的高照度下,人们更倾向于维持注意力。结合基于脑电图的注意力测量和访谈后的答案,300 lx、4000 K 的照明条件是所调查条件中大学建筑的推荐设定点,为调整照明标准以发挥其节能优势提供了实践依据。
摘要 本文介绍了一种使用混合量子深度神经网络模型 (H-QDNN) 来提高室内定位精度的方法。为了提高基于当代技术的室内定位精度,我们结合了量子计算 (QC) 和深度神经网络 (DNN) 的优势。QC 的优势在于可以加速训练过程,并通过量子叠加和纠缠高效处理复杂的数据表示,而 DNN 则以能够提取有意义的特征和从数据中学习复杂模式而闻名。所提出的模型可以使用小型数据集进行训练,从而减少对大量数据的需求,这在室内定位中尤其有用,因为在室内定位中,数据收集可能耗时且资源密集。为了评估我们提出的方法的有效性,我们进行了广泛的实验并与现有的最先进方法进行了比较。结果表明,与传统技术相比,H-QDNN 模型显著提高了室内定位精度。此外,我们还深入了解了有助于提高性能的因素,例如所使用的量子启发算法和混合指纹的集成。
4.1 Tilt of mast/fork carriage forward/backward degrees 2/4 4.2 Height of mast, lowered in (mm) See mast tables 4.3 Free lift in (mm) See mast tables 4.4 Lift in (mm) See mast tables 4.5 Height, mast extended 1 in (mm) See mast tables 4.7 Height of overhead guard (cabin) 2, 9 in (mm) 85.63 (2175) 4.8座椅高度与(mm)42.60(1082)4.10(毫米)12.13(308)4.19(MM)90.51(2299)4.20叉子在((mm)48.39(MM)48.39(1229)4.21总宽度39.80(MMMMMMMMM MM MM MM MM MM MM MM MM MM MM MM MM MM)中,(MM)90.51(2299)4.20的总长度(2299)4.20 2331 in(mm)1.4/3.9/42(35/100/1070)1.4/3.9/42(35/100/1070)4.23叉车ISO 2328,类/A类,B 2a 4.24叉4.24叉宽度(MM)27.56(700)4.25距离(700)4.25距离/MAX/MAX/MAX 7. 7.25距(240/660)9.45/25.98(240/660)4.26(mm)35.43(900)4.28到达(mm)23.03(585)25.0(585)25.0(635)25.0(635)4.31地面清除率,RL,MMMM MM)的距离(毫米)23.03(585)25.0(635)25.0(635)2.95(MMMM)2.95(MM)4.5(MM), (毫米)2.95(75)4.34.1托盘39.3“ x47.2”(1000毫米x 1200毫米)的过道宽度(l6 x b12)英寸(l6 x b12)in(mm)107.0(2718) - 参见图表107.5(2731) - 参见图表4.34.2 aisle width for Pallth 31.5 00 000.5 x 14.5 x 14.5 x4.5 x 14 x 14 x 14 x 14 x 14 x 14 x 14.5”(x4)。 mm) lengthwise - (b12 x L6) in (mm) 108.8 (2764) - See charts 108.9 (2767) - See charts 4.35 Turning radius (Wa) in (mm) 65.79 (1671) 67.64 (1718) 4.37 Length across wheel arms in (mm) 70.67 (1795) 72.64 (1845) 4.42 Step height (from ground到运行板)(毫米)21.65(550)4.43步进高度(在运行板和地板之间的中间步长)(mm)14.61(371)
摘要 - 多功能和自适应的语义理解将使自主系统能够理解并与周围环境相互作用。现有的固定级模型限制了室内移动和辅助自主系统的适应性。在这项工作中,我们介绍了Lexis,这是一种实时的内部本地化和映射(SLAM)系统,它利用了大型语言模型(LLMS)的开放式视频库本质(LLMS),以创建一种统一的方法,以实现现场和放置识别。该方法首先构建了环境的拓扑大满贯图(使用视觉惯性探子仪),并嵌入了图节点中的对比性语言图像预处理(剪辑)特征。我们将此表示形式用于灵活的房间分类和细分,作为以室内为中心的地方识别的基础。这允许循环封闭搜索针对语义相关的位置。使用公共,模拟数据和现实数据,涵盖办公室和家庭环境,对我们提出的系统进行评估。它成功地将房间分类为不同的布局和尺寸,并优于最先进的房间(SOTA)。对于位置识别和轨迹估计任务,我们实现了与SOTA的等效性能,所有这些都使用相同的预训练模型。最后,我们演示了系统的计划潜力。视频:https:// youtu。BE/GRQF3EUDFX8
今天的摘要文章信息,通过有效利用自然资源,可以使用景观中的节能解决方案。但是,我们可以通过自然消耗自然资源而自我更新的能源来满足我们的能源需求。本研究旨在揭示如何在节能解决方案框架内解决景观计划和设计过程中涉及的所有活动。该研究的材料包括可再生能源和节能解决方案中使用的其他自然资源,以及能够可持续使用及其产生的作品的资源价值。该研究的方法介绍了传统的景观设计过程和节能景观设计过程,并确定了定义节能景观设计方法的参数。在城市或农村地区的节能景观设计,或各种尺寸的开放绿色空间,将通过使用植物材料潜力和地理数据来确保能源有效地利用能源,以进行气候控制,阴影和凉爽的区域,设置良好的结构,适当的材料选择,有效的土地利用,良好的土地使用,有效的花园以及有效的农业生产。为开发一种用于节能景观设计的模型,已经确定了在景观设计中使用太阳能,风能,地热和生物质能量的标准。此外,还考虑了能源在生存和非生存材料,绿色屋顶,绿色墙壁,爱好花园,永续农业花园,雨水花园和Xeriscape地区的实用和经济使用。在这种情况下,目的是通过这些标准为景观设计过程创建指南。
摘要。在本文中,我们解决了RGB-D语义分段的问题。解决此问题的关键挑战在于1)如何从深度传感器数据中提取特征,以及2)如何有效地融合从两种模式中提取的特征。对于第一个Challenge,我们发现从传感器获得的深度信息并不总是可靠的(例如,具有反射性或深色表面的对象典型地读取不准确或无效的传感器读数),现有的使用Convnets提取深度特征的方法并未明确考虑不同像素位置的深度值的可靠性。为了应对这一挑战,我们提出了一种新颖的机制,即不确定的自我注意力,该机制明确控制了从无法可靠的深度像素到特征提取过程中的深度像素的信息。在第二个挑战中,我们基于交叉注意力提出了一个有效且可扩展的融合模块,该模块可以在RGB编码器和深度编码器之间自适应地融合和交换信息。我们提出的框架,即uctnet,是一个编码器 - 模型网络,natu-rally将这两个关键设计结合在一起,以实现鲁棒和准确的RGB-D分割。实验结果表明,UCTNET优于效果,并在两个RGB-D语义分割基准上实现最先进的性能。
该论文描述了Romulux,Romulux是一种配备3D激光雷达的移动机器人,载有照明仪,专门用于测量室内照明数量。目的是检查符合照明标准的水平和均匀性。提出了使用机器人操作系统(ROS)的机器人的一般体系结构,并根据不同的约束来解释技术选择。使用同步定位和映射(SLAM)算法计算照明数据的空间定位。然后将测量值与标准要求进行比较,并插入用户定义的网格中,以生成密集的照明图。提出了两个实验,一个在运动厅里,一个在冰上溜冰场中,结果暴露了。本文将遵循从设计机器人到能够生成照明图的功能系统的工作流程,与标准相比并节省能量,以防万一过度照明。
无线通信系统提供强大的数字、双向、长距离信号传输,包括视频和数据下行链路(从无人机到地面站)以及命令上行链路(从地面站到无人机)。使用 2.4 GHz 频段,无线通信系统无需任何特殊授权即可运行,即使在最复杂和最狭窄的空间中也能保持其高质量。例如,可以在封闭的锅炉中将 Elios 飞到离地面 100 米以上的地方,飞行员可以安全地站在入口人孔旁边。由于每个用例都有自己的特殊性,我们整理了一个表格,代表标准用例和预期的信号覆盖范围。