本演示文稿将讨论在设计,建造和设置未螺旋的表面容器(USV)期间所学的经验教训。特别是,我们将讨论设计限制,我们在第一和第二版中学习和应用的教训;由于EMAPS自主USV的性质,设计影响的设计影响,例如远离居住空间以及远程和自动操作所需的功率和控制系统。我们还将讨论在海洋环境中实施自主系统所需的系统以及所涉及的挑战。
碳材料在电化学储能中起着重要作用,因为它们具有低成本、高可用性、低环境影响、表面功能团、高电导率以及热稳定性、机械稳定性和化学稳定性等优点。目前,碳材料可以被认为是超级电容器和电池领域探索最广泛的材料,超级电容器和电池是需要高功率和高能量的广泛应用的设备。然而,与所有技术一样,也有一个适应和优化的过程;因此,碳材料一直在与新兴的进步保持一致。同样,多年来,人们发现了生产更适合储能的碳的新方法和新工艺,使它们与金属基化合物产生良好的协同作用,以满足当前标准。在这项工作中,我们汇集了碳材料领域的进展
摘要:减少的氧化石墨烯(RGO)是一种具有许多潜在应用的高度有希望的材料。各种碳源可用作生产RGO的起始材料。这项研究探讨了甘蔗渣(SB)的利用,甘蔗(SB)是一种全球丰富的农业废料,是RGO合成的先驱。最初,在流动的氩气下以10°C/min的速度以10°C/min的速度在750°C下进行热解,以提取石墨相。然后使用悍马的方法将提取的石墨转换为氧化石墨烯(GO)。使用金属锌(Zn)作为还原剂,将GO产物进行超声处理,以在还原为RGO之前打破氧官能团。通过XRD和FTIR分析确认了从石墨到GO的每个合成步骤,从石墨到RGO的每个合成步骤的石墨变换。此外,拉曼光谱法进一步证实了RGO的形成,该光谱显示了RGO相的特征D,G和2D频段。sem显微照片揭示了RGO的形态,作为片状2D多层纳米片,薄板厚度为几百nm。这项研究还研究了Zn粉末浓度对形成RGO的GO的影响。发现适当的锌量对于RGO合成至关重要,因为过量量导致RGO样品中存在Zn残基。这些发现提出了一种直接有效的方法,可以从甘蔗渣拿起RGO准备RGO,可以将其扩展为工业生产。此外,对RGO样品的电化学性质的研究显示,在优化的合成条件下,包括较大的表面积,高特异性电容,电导率和良好稳定性。这将SB产生的RGO样品定位为超级电容器应用的有前途的电极材料。
近年来,由于对更可持续的能源和运输的需求越来越强劲,电动汽车市场和行业一直在迅速发展。随着这种更大的需求,出现了新的挑战,例如自主性和效率。体重在这两个参数中起着重要作用,因此减轻重量对于电动汽车的性能至关重要。另一方面,复合材料,尤其是碳纤维增强聚合物(CFRP),提供了经典金属材料的低重量替代品。在车辆中,可以通过复合材料改善机械性能的组件,同时减小结构重量,这是电池容器。在此组件中使用复合材料的使用变得越来越普遍,无论是在高性能的汽车中,例如机动运动还是常规运输车辆。复合材料不仅具有较高的电阻/权重关系,而且还提供了其他优势,例如低电导率和更大的刚性。他们也有可能制作更复杂的形式。与高性能运动运动一样,复合材料可用于工程相关的环境中,例如促进学生融合的竞赛。Formula Student是一项全球竞赛,在该竞争中,学生面临挑战和制造公式式跑步汽车的挑战。这些汽车可能具有燃烧,电动机或混合运动组。电动汽车的关键组成部分是其电池,因此是其容器,可以保证结构完整性和安全性。该容器由许多铝制团队制造。但是,许多团队选择在电动汽车市场之后使用复合材料。在本文中,提出了CFRP容器的概念来提高组件性能和安全性。经过一些设计迭代后,通过有限元素模拟研究了CFRP电池盒的性能。这样做不仅是为了了解新结构的行为,而且是为了确保它符合汽车将参与的比赛规定。还使用了复合材料的经典理论对分析模型进行了综述,这导致了某些模型与实验论文的比较。使用Altair HyperMesh进行临界加载案例进行层优化模拟,以减轻所选区域的重量或增加电阻。 最后,使用类似于累加器盒的材料进行实验测试,以创建一个工作流程,以在电池盒中使用的材料测试中使用。 关键字:复合材料,电动汽车,有限元素分析,学生公式,电池讲故事的人,模拟,弯曲测试。层优化模拟,以减轻所选区域的重量或增加电阻。最后,使用类似于累加器盒的材料进行实验测试,以创建一个工作流程,以在电池盒中使用的材料测试中使用。关键字:复合材料,电动汽车,有限元素分析,学生公式,电池讲故事的人,模拟,弯曲测试。
摘要。2016 年 1 月 1 日,具有历史意义的联合国峰会通过了 17 项可持续发展目标 (SDG),并制定了 2030 年可持续发展议程。能源是可持续发展议程的重要组成部分,但当前的可再生能源系统面临着间歇性、电网整合挑战和能源存储效率等诸多限制。超级电容器具有高储能效率、高功率密度和资源效率,使其能够为不同的可持续发展目标做出贡献,例如与可再生能源解决方案相结合时促进清洁能源发电(可持续发展目标 7),在水处理厂等工业过程中,它可以提高能源效率,降低运营成本(可持续发展目标 6),它还可以通过提高能源效率来提高电动汽车性能,从而为可持续发展目标 11 做出贡献。考虑到超级电容器在实现可持续发展方面的不同应用,本评论文章重点介绍了超级电容器及其类型的重要性。它还回顾了电极和电解质的不同材料,并说明了除应用之外的未来范围。
摘要:使用连续的离子层吸附和反应(Silar)方法,将氧化物和氧化物基的电极的薄膜沉积在不锈钢基板上。X射线衍射(XRD)研究表明,底物上的无定形材料形成,并通过能量分散研究(EDS)证实了材料的组成。水接触角度测量显示了沉积材料的超吞噬表面。形态显示氧化摄氏类似于手指芯片型形态,而真菌喜欢和鳄鱼后生的形态,对于氧化氧化物氧化物氧化物和氧化物氧化物和氧化物氧化物 - 氧化物 - 氧化物 - 氧化物激活碳(AC)的复合。在0.2 m的非水力KCL电解质中进行了超级电容器施用的环状伏安测量。指定具有94.22°接触角的氧化物电极为106.25 f·g
摘要:尽管执行了最佳药物治疗(OMT),但晚期心力衰竭(ZS)的特征是耐火症状和频繁再住院。 div>由于患有心血管疾病的危险因素和人口衰老的患者数量增加,末端ZS的div>越来越大,这是卫生保健系统的巨大临床挑战和负担。 div>预测是一种不良疾病,其死亡率为25%至75%。 div>鉴于OMT是一种有限的效果,在治疗此类患者时,考虑了涉及心脏移植和机械循环支持的先进治疗方法。 div>心脏移植是末端ZS的黄金标准,但是由于供体器官数量有限,并且存在某些禁忌症,因此将无法使用这种方法对患者进行治疗。 div>短期机械循环装置可用于治疗心源性休克和急性加剧,以恢复决策,恢复,孔孔或心脏移植的升级,恢复,升级。 div>长期左心室支撑装置被安装为倒带到心脏移植或作为永久意识到心脏移植的患者的目的地治疗。 div>充分使用心脏移植的主要挑战是捐助者的需求和外观之间的不成比例,这需要候选人的最佳排练以及资源的更好合理化。 div>对于成功的结果至关重要。 div>为时已晚,无法将这些患者转到移植中心进一步限制治疗选择。 div>尽管机械循环支持设备的技术取得了进步,但它们的全部潜力仍然有限,对右心室,欠发达的完整体内系统,平民或可及性以及安装后可能不需要的事件的足够长期支撑,例如通道,长号,长号,长号或出血。 div>在这项检查中,对终末Z患者的治疗挑战进行了综述,对疾病本身,药物治疗和使用晚期治疗方法的使用。 div>
本文提出了一种适用于宽频率范围的新型静电可调电容器。针对其应用,提出了完整的设计规则来设计 0.01 pF – 2.05 pF 范围内的可变电容器。根据所需的电容值,设计的电容器占用 0.03 mm 2 – 1.12 mm 2 的空间,与相关已发表的文献相比非常小。使用浮动技术来获得高品质因数。所提出的电容器的品质因数在 1.28G 至 2.78GHz 的频率范围内在 45 到 100 之间,并且可调电容器的可调谐范围为 374%。在提出完整的设计规则和相关方程后,所提出的电容器用于带有螺旋电感器的放大器电路中,并评估了所提出的电容器的性能并将其与其他电容器进行了比较。使用 COMSOL Multiphysics 进行模拟。