许多人以不同的方式为我作为博士学位的经验做出了贡献。首先,我要感谢CMP的所有人。首先,非常感谢我的论文导演AgnèsRoussy多年来。感谢您不断的支持,尤其是在困难时期。,也感谢您每天都在您的办公室里支持我...幸福!我还要感谢当时CMP主任StéphaneDauzère-Pérès,因为我有机会在他的实验室中进行论文。我要特别感谢Jakey的所有帮助以及我一直学到很多东西的所有有趣的讨论(即使我们不一定人同意!)。和种族,感谢所有的SFL人!…为了休息,为了进行研讨会,分享美妙的食堂……与您和属于这个小组的博士学位真是太好了!
粒子宇宙学的巨大成功是与当前宇宙微波背景(CMB)温度t¼2的大爆炸宇宙学的一致性。7 k,测量值ωb,标准模型(SM)中三个光中微子的存在,以及测得的氦4(4 He)和氘(d)的原始量。这些元素的形成对物理敏感,温度范围为100 keV至〜10 meV,有时从几秒钟到宇宙寿命的几分钟。原始4和D的测量达到了精度百分比,因此我们能够询问有关该时代宇宙特性并获得定量答案的问题。这样一个问题涉及宇宙“黑暗辐射”的性质。现在是通过大爆炸核合成(BBN)和CMB建立的,即早期宇宙能量密度的相当一部分是黑暗辐射的形式。SM将这种辐射解释为SM中微子,它与光子浴中的热接触直至几MeV接近温度。有重要的理由来测试这种解释。例如,在早期与SM的热接触中的其他(近)无质量状态可能会增加此深色辐射。在Lambda冷暗物质中,BBN,CMB和BARYON声学振荡(BAO)的当前95%约束。4(BBN),△n eff≲0。33(CMBþBAO用于λCDMþNEFF),
在原子细节中解决蛋白质 - 配体相互作用是了解小分子如何调节大分子功能的关键。尽管最近的低温电子显微镜(Cryo-EM)进行了分解,但可以对许多复杂的生物分子进行高质量的重建,但是结合的Lig-和S的分辨率通常相对较差。此外,将分子模型构建和完善分子模型的自动化方法主要集中在蛋白质上,并且可能不会针对小分子配体的各种特性进行优化。在这里,我们提出了一种将生成性人工智能(AI)与低温EM密度引导的模拟整合在一起,以将配体拟合到实验图中。使用三个输入:1)蛋白质氨基酸序列,2)配体规范,以及3)实验性的冷冻EM图,我们验证了我们在一组生物医学相关的蛋白质配体复合物上验证了我们的方法,包括激酶,GPCR和溶质转运蛋白,在AI培训数据中都不存在。在生成AI不足以预测实验姿势的情况下,将柔性拟合整合到分子动力学模拟中,相对于沉积的结构从40-71%到82-95%的分子模拟拟合的整合改善了配体模型对图。这项工作提供了一个直接的模板,用于集成生成的AI和密度引导的模拟,以在配体 - 蛋白质复合物的低温EM地图中自动化模型构建,并在新型调节剂和药物的表征和设计中使用潜在的应用。
这项研究探讨了怀孕母羊高密度饲养对其后代肠菌群的影响。将40个小尾羊绵羊随机分为两组,包括高密度组(1羊/m 2)和对照/低密度组(1羊/2m 2)。粪便样品,以进行高通量测序和多种意义分析。我们发现了肠道菌群在母羊和后代对不同饲养密度的反应。潜在有害细菌的数量(Ralstonia Pickettii,Ruegeria,Rhodobacteraceae等)在高密度组中增加了,而几种益生菌(振荡器,Akkermansia,Rusinococcaceae-UCG-010等)的丰度发现比对照组的明显小得多(p <0.05)。此外,高密度组中的肠道菌群随着年龄的增长而表现出更大的可变性,这表明住房密度的增加具有显着的相关性。在一起,怀孕绵羊的饲养密度不当会损害自己和后代,这不仅无法改善经济利益,而且会产生有害影响。这项研究可能为健康和可持续的绵羊繁殖和农业提供新的想法。
France *correspondence: Prof. Dr. Juergen SIEPMANN College of Pharmacy, INSERM U1008 University of Lille, 3, rue du Professeur Laguesse, 59006 Lille, France juergen.siepmann@univ-lille.fr Abstract Different types of ibuprofen-loaded, poly (D,L lactic-co-glycolic acid) (PLGA)-based implants were prepared by 3D打印(液滴沉积建模)。网格形植入物的理论填充密度从10%到100%变化。在琼脂糖凝胶和搅拌良好的磷酸盐缓冲液pH 7.4中测量药物释放。使用重量法测量,光学显微镜,差分扫描量热法,凝胶渗透色谱和扫描电子显微镜来监测植入物的关键特性(以及暴露于释放介质时的动态变化)。有趣的是,与实验设置无关,植入物的植入物的释放相似。相比之下,填充密度100%的植入物显示释放动力学较慢,并且在琼脂糖凝胶中改变了释放曲线的形状。这些观察结果可以用聚合物丝之间的连续水相的存在(或不存在)来解释。在较低的填充密度下,这足以使该药物从单丝中释放出来。相比之下,在高填充密度下,细丝的合奏起着更大的(或多或少均匀)的聚合物矩阵,并且该药物要克服的平均扩散途径更长。关键词:PLGA;注入; 3D打印;布洛芬;肿胀;药物释放机制琼脂糖凝胶(模仿生物组织)阻碍了大量的PLGA肿胀,并延迟了最终的快速药物释放阶段的开始。对从基于PLGA的3D印刷植入物对药物释放的控制的机械理解得到了改进,可以帮助促进这种高级药物输送系统的优化。
𝑆𝑈(𝑁𝑁)仪表理论会经历反馈相变[1]。对这种过渡的非扰动研究从许多角度就可以对Yang-Mills理论的动力学有宝贵的见解。例如,一个人可以表征热力学可观察物的行为,这是颜色数量𝑁𝑁[2-4]的函数。早期宇宙中的一阶相变给引力波的烙印(例如参见参考文献。[5 - 8])。这打开了令人兴奋的可能性,即将重力波用作标准模型以外的物理探针的其他探针。除其他应用外,该程序与标准模型的扩展相关,该标准模型提出了HIGGS领域,新的Top-Quark合作伙伴或暗物质候选者的综合性质,例如基于𝑆𝑝(4)仪表理论的候选者,最近在数字上研究了,例如参考。[9 - 13]。要理解由给定理论中相变的引力波的强度,需要对相关可观察物的非扰动计算进行。在此贡献中,我们使用线性对数松弛(LLR)算法[14]在𝑆𝑈(3)Yang-Mills中报告了计算。对于该系统,最近在参考文献中提供了对潜热的高精度计算。[15]。使用与我们在这里讨论的类似方法的计算,但是在参考文献中讨论了靶标𝑆𝑈(4)。[16]。这项工作的一部分已在参考文献中报告。[17],我们将读者推荐给读者进行互补讨论。正在准备更广泛的出版物[18]。本工作的其余部分的结构如下。在教派中。2我们提供了晶格系统的描述,算法的博览会以及对数值实现的讨论。第3节报告了我们的数值发现。最后,我们的结论和未来工作的概述是在本节中给出的。4。
建模原子坐标为目标冷冻电子显微镜图是结构确定的关键步骤。尽管最近进步,但具有多个功能状态的蛋白质仍然是一个挑战 - 尤其是当某些状态无法使用合适的分子模板时,地图分辨率不足以构建从头模型。这是一种常见的情况,例如,在药理学相关的膜结合受体和转运蛋白中。在这里,我们介绍了一种改进方法,其中i)几个初始模型是通过Alphafold2中多个序列比对(MSA)空间的随机次采样生成的,ii)将对基于结构的聚类进行基于结构的群集,iii)密度引导的分子动力学模拟从中心结构和IV中进行了模型,并在模型中进行了模型。与三种膜蛋白(降钙素受体样受体,L型氨基酸转运蛋白和丙氨酸 - 二孢菌碱转运蛋白)相比,这种方法提高了拟合精度。我们的结果表明,使用生成AI和基于模拟的精炼结合使用的集合结构有助于在几种膜蛋白家族中建立替代状态。
建模原子坐标为目标冷冻电子显微镜图是结构确定的关键步骤。尽管最近进步,但具有多个功能状态的蛋白质仍然是一个挑战 - 尤其是当某些状态无法使用合适的分子模板时,地图分辨率不足以构建从头模型。这是一种常见的情况,例如,在药理学相关的膜结合受体和转运蛋白中。在这里,我们介绍了一种改进方法,其中i)几个初始模型是通过Alphafold2中多个序列比对(MSA)空间的随机次采样生成的,ii)将对基于结构的聚类进行基于结构的群集,iii)密度引导的分子动力学模拟从中心结构和IV中进行了模型,并在模型中进行了模型。与三种膜蛋白(降钙素受体样受体,L型氨基酸转运蛋白和丙氨酸 - 二孢菌碱转运蛋白)相比,这种方法提高了拟合精度。我们的结果表明,使用生成AI和基于模拟的精炼结合使用的集合结构有助于在几种膜蛋白家族中建立替代状态。
1马来西亚登龙加州海洋科学与环境学院,21030吉隆坡,马来西亚孟生部孟生部2号,马来西亚2化学科学系,科学与技术系,马来西亚43600 UKM BANGI,MALAYSIA 33600 MALAYSIA 33600 MALAYSIA 33600 MALAYSIA MALAYS MALAYS IKIAL SCICOCYIA,ICTILTICIA,INFORITIAL SCICOCHIA,INFORITIA,INSCICEN,INSCICIA,INCUSICIA,INCUSICIA,INSCICEN,INCUSICIE,INCUSICIE,INCUSICITY 33 Skudai,Johor,Malays IA *通讯作者:Farhanini@umt.edu.my收到:2024年8月13日;修订:2024年11月17日;接受:2024年11月18日;发表:2025年2月10日,本研究在无情追求清洁能源的突破性进步中摘要,推出了一种电催化剂,它还原了与磁铁矿纳米颗粒(RGO-MNP)集成的氧化石墨烯(RGO-MNP),该氧化石化是为了彻底改变氧气减少反应(ORR)。通过复杂的密度函数理论(DFT)模拟,我们演示了MNP与RGO的杂交如何导致电子性能的深刻修改,从而解锁了催化活性和电子转运的前所未有的增强。复合材料表现出非常稳定的稳定性,这是由-1036.96 kJ/mol的结合能证明的,而其相互作用能为-389.29 kJ/mol,信号是热力学上有利的结构。分子静电电势(MEP)映射揭示了电子致密和不足区域的丰富相互作用,对于优化ORR机制至关重要。此外,0.173 eV的狭窄homo-lumo间隙强调了材料的高反应性和最佳电荷转移动力学。这项工作为开发高效,耐用和可扩展的ORR催化剂建立了强大的基础,为在燃料电池和清洁能源系统中有影响力的应用开辟了途径。这些计算见解肯定了RGO-MNP作为下一代电催化剂,不仅提供了出色的稳定性和效率,而且还具有推动可持续能源技术变革性改进的潜力。关键词:还原反应,氧化石墨烯,磁铁矿纳米颗粒,密度功能理论,电催化剂简介当前的发电系统在满足对清洁和可靠功率的增长需求方面面临重大挑战[1,2]。化石燃料是一致的电力来源,但昂贵。但是,目前的问题不一定是缺乏化石燃料,而是与他们继续使用电力相关的环境和经济负担[3,4,5]。燃料电池是一种可持续且具有成本竞争力的替代方案,可以满足我们不断增长的能源需求[1,2,4,6,7]。还原反应(ORR)是燃料电池等设备中电化学转化的基石[1,7,8]。它们代表了将燃料中存储的化学能转化为可用的电能的过程的核心。一个ORR涉及两个同时的过程:氧化
原子的精确排列和性质驱动凝结物质中的电子相变。为了探索这种微弱的联系,我们开发了一种在低温温度下工作的真正双轴机械变形装置,与X射线衍射和运输测量值兼容,非常适合分层样品。在这里我们表明,TBTE 3的轻微变形对其电荷密度波(CDW)具有显着影响,并具有从C到A / C参数驱动的方向转变,A = C附近的微小的同存区域,并且没有空间组的变化。CDW过渡温度t c在a = c 1 r的线性依赖性中,而间隙从共存区域中饱和。这种行为在紧密结合的模型中得到很好的解释。我们的结果质疑RTE 3系统中的间隙和T C之间的关系。此方法为研究中共存或竞争的电子订单的研究开辟了新的途径。