核糖体将核酸中编码的遗传信息转化为蛋白质。即使将氨基酸逐一组装在一起,这种解码过程也需要mRNA上的三核苷酸密码子与同源氨基酰基-TRNA的相应反密码子之间的watson-Crick相互作用。遗传密码是退化的,由于序列柔韧性主要在第三核苷酸的水平上,因此由一个或多个TRNA识别。1,2另一方面,核酸的合成是由聚合酶介导的,并通过在生长链上组装单个单字母核苷酸来进行进行。由于机制的差异,这些基本生物聚合物的合成涉及的错误率大大差异从非常低的DNA复制到更容易出错的DNA转录到mRNA中,以及将mRNA转换为蛋白质的较小的忠诚度(分别为〜10 -8,〜10 -5,〜10 -5,〜10 -5,〜10 -10 -4,误差率将mRNA转换为蛋白质。3,4
肝脏的独特建筑由肝叶组成,将代谢的肝特征分为两个不同的区域,即围围和周围区域,其空间特征广泛定义为代谢齐射。r-spondin3(rspo3),一种促进Wnt信号通路的生物活性蛋白,调节尤其是在肝中心静脉周围的代谢特征。然而,由RSPO3/WNT信号通路调节的肝代谢分区的功能影响,对全身代谢稳态的理解仍然很差。在这项研究中,我们通过使用鼠模型分析了肝脏中RSPO3的局部功能以及肝RSPO3在人体其他器官上的远程作用。RSPO3表达分析表明,RSPO3表达模式在鼠肝脏中被空间控制,使其位于腹膜区域并在进食后收敛,这些过程的动力学在肥胖症中受到干扰。我们发现,病毒介导的肥胖肝组织中RSPO3的诱导可改善胰岛素抵抗,并通过恢复减弱的器官胰岛素敏感性,减少脂肪组织增大并逆转过度刺激的适应性热量烯二还是SIS来防止体重增加。肝迷走神经的修饰抑制了源自肝RSPO3诱导的这些远程作用,向脂肪组织和骨骼肌降低,这表明信号是通过由传入的迷走神经和富有效应的症状神经来传递的。此外,非神经元间的通信上调上调肌肉脂质利用是部分原因是肥胖症中脂肪肝发育和骨骼肌质量降低的改善。相反,通过CRE-LoXP介导的重组系统抑制肝RSPO3由于葡萄糖不耐症和胰岛素抵抗而加剧糖尿病,从而促进脂肪肝发育并降低骨骼肌质量,从而导致肥胖。总的来说,我们的研究结果表明,肝RSPO3的调节有助于通过新鉴定的器官间通信机制维持全身性葡萄糖代谢和身体组成。
背景:三甲基尿症(TMAU)是一种罕见的隐性遗传疾病,全球患病率有限。迄今为止,还没有关于沙特阿拉伯记录的TMAU案件的正式报道。目的:在这项研究中,我们开发了一种液相色谱 - 质谱法(LC-MS)方法,用于分析三甲基矿山(TMA)和三甲胺N-氧化胺(TMAO)的尿液和血浆样品中的第一个报道的TMAU阿拉伯TMAU病例。患者和方法:一名41岁的沙特男子在国民警卫队医院被诊断出患有TMAU。血液和尿液样品,以确认TMAU的诊断。在这项研究中,我们研究了LC-MS,细胞培养,流式细胞仪,粘附测定和Sanger测序分析。此外,在这项研究中,我们选择了5个健康对照。结果:结果表明,在尿液和血浆样品中均存在TMA水平升高,而与对照组相比,TMAO水平显着降低。此外,我们利用TMAU患者的血浆样品作为新型模型,研究低TMAO对单核细胞和内皮细胞功能的潜在影响。DNA测序分析确定了C.622G> t(P.Glu208*),该分析在FMO3基因中创建了过早的停止密码子。结论:与非TMAU患者的血浆相比,我们的发现显示了TMAU患者血浆刺激的单核细胞和内皮细胞的差异反应。这些不同的反应可能是内皮功能的关键调节剂,并导致血管损伤。关键字:三甲基尿症,TMAU,LC-MS,细胞培养,流式细胞仪,粘附测定和Sanger测序分析
图1:Encodon和Decodon的概述:A)已从NCBI基因组数据库中提取了5000种物种的6000万个编码序列,并用于预先培训Encodon和Decodon基础模型。b)绝大多数数据(98.7%)由细菌编码序列组成。显示了NCBI中非细菌编码序列的分裂构成的饼图。c)NCBI基因组数据库中编码序列长度(密码子数)的直方图。我们将2048用作由Encodon和Decodon支持的最大序列长度,并考虑到所示的分散量以覆盖超过99.8%的序列。d)我们使用蒙版语言建模(MLM)目标仔细研究了Encodon,其中序列的一部分被损坏/掩盖了,并且该模型必须在给定其余的令牌(即上下文)。decodon是一种有条件的生成变压器模型,它通过将序列生物体作为第一个输入令牌来提供可控的编码序列生成。我们在汇总的编码序列中,用因果(自动性)语言建模目标进行了训练,其中每个序列都用特殊的有机体令牌培养。旋转位置自我注意事项均在Encodon和Decodon块中使用。e)3个ecdodons和2个解码,比例不同(即可训练参数的数量)已在NCBI基因组数据库的汇总语料库上进行了超过1,000,000个优化步骤的预训练。
Bardet-Biedl综合征(BBS)是一种与原发性纤毛功能障碍相关的常染色体隐性疾病,表现出视网膜营养不良和进行性视觉丧失,以及其他临床特征。bbs1是在BBS中发现的最常见的突变基因,而错义BBS1 M390R突变是最常见的等位基因。我们先前已经证明,在调节的Remodopsin激酶(AAV8-RK-BBS1)和巨细胞病毒(AAV8-CMV-BBS1)下表达野生型BBS1 cDNA的不同AAV8载体是安全且能够停止BBS1 Missense Youse BBBS Mode bbs1鼠标BBS1 MISSONSE BBS1 MORTENS MISSENSE MOLTENS MISTENS MORTANE DENINALION的促进剂(AAV8-CMV-BBS1)的启动子(M390R)(Freitas等人)。我们还介绍了BBS1的密码子优化版本的开发如何增加蛋白BBS1表达(De Castro等人)。在这项研究中,我们通过AXV-101(在CAG启动子(AAV9-CAG-HCOBB1)调节下表达人类密码子优化的BBS1 cDNA序列(HCOBBS1)(AAV9-CAGBB1),我们提高了AXV-101的视网膜下递送的功效和安全概况。在这里,我们单方面用单一的泡沫给了新生儿P7-9 M390R和野生型(WT)动物的5种不同的队列(n = 5-12);用AXV-101配方缓冲液和磷酸盐缓冲盐水(PBS)和3个队列的两个对照组,以及增加剂量的AXV-101(1x10 9,5x10 9和1x10 10 10总病毒基因组(VG))。对侧眼被用作内部对照。我们使用光学相干断层扫描(OCT)和用电子图(ERG)的功能救援测量了6个月内的安全性和功效。
密码子的优化已进化为通过利用遗传密码的冗余,从而增强蛋白质表达效率,从而为单个氨基酸提供多个密码子选项。最初在大肠杆菌中观察到的最佳密码子使用与高基因表达相关,这推动了从基础研究扩展到生物药物和疫苗开发的应用。该方法对于调节基因疗法的免疫反应特别有价值,并且具有创建组织特异性疗法的能力。然而,挑战仍然存在,例如对蛋白质功能产生意外影响的风险以及评估优化有效性的复杂性。尽管存在这些问题,但密码子优化对于推进基因疗法至关重要。这项研究在基因疗法的背景下对当前的密码子优化指标进行了全面综述及其在研究和临床应用中的实际用途。
抽象背景:黑色素瘤是皮肤癌最具侵略性的形式。黑色素瘤干细胞(MSC)是黑色素瘤侵袭和转移的驱动力之一。因此,探索维持MSC茎的机制非常重要。在这项研究中,表征了从A375细胞系衍生的CD147阳性(CD147+)MSC。方法:从A375细胞中对侧种群(SP)和非SP细胞进行分选。进行了定量的实时聚合酶链反应和蛋白质印迹分析,以确定SP和非SP细胞中CD147的表达。随后,从SP细胞中分离出CD147+和CD147阴性(CD147-)细胞。通过球体形成,伤口 - 修复和Transwell分析,可以鉴定出CD147 +/-抗原呈现细胞的干细胞特征和转移潜力。Western印迹分析,以评估反式形成生长因子-BETA1(TGFβ1)和神经源性基因座缺口同源蛋白1(Notch1)信号通路的蛋白质水平。异种移植肿瘤实验,以研究体内CD147+细胞的肿瘤基因能力。结果:CD147在A375细胞系的SP细胞中高度表达。CD147+细胞在体外具有更强的球体形成,迁移和侵袭的能力。CD147+细胞中TGFβ1,Notch1,Jagged1和Hes1的蛋白质水平高于CD147-细胞。此外,CD147+细胞在体内显示出更强的致瘤和转移性潜力。©2024密码子出版物。由密码子出版。结论:A375细胞系的SP细胞表达了高水平的CD147,而CD147+ SP细胞POS具有更强的茎样特征和运动性,这与TGFβ和Notch途径的激活有关。
在这项研究中,我们研究了生物体的密码子使用偏置水平如何作为生命三个王国(古细菌,细菌,eukarya)的各种基因组和进化特征的预测因素和分类。我们对现有遗传数据集进行了次要分析,以构建几种人工智能(AI)和机器学习模型,这些模型对13,000多种生物进行了培训,这些模型表明可以准确地预测有机体的DNA类型(核,线粒体,氯肾上腺素),并简单地使用其遗传密码(64 codon codon codon codain usece频率)。通过利用先进的AI和机器学习方法来准确地识别来自密码子使用模式的进化起源和遗传组成,我们的研究表明,遗传密码可用于训练精确的机器学习分类和系统发育特征的机器学习分类器。我们的数据集和分析在GitHub和UCI机器学习存储库(https://archive.ics.uci.edu/ml/datasets/codon+usage)上公开可用,以促进开放源的可重复性和社区参与。
1。S. Ye和J. Lehmann。 ,2022,50,4113-4 2。 F. V.支持和K. T. Hughes,Proc。 natl。 学院。 SCI。 U.S.A.,2017,114,4745-4750。 3。 K. Mohler和M. Ibba,Nat。 微生物。 ,2017,2,17117。 4。 J. M. M. Ogle和V. Ramakrishnan,Annu。 修订版 生物化学。 ,2005,74,129-1 5。 J. W. Chinese,A。Cropp,J。C. Anderson,M。 6。 M. A. Shandell,F。Cornish的太阳,2021,60,3455-3469。 7。 P. Ghosh,H。M. Cross,K。 am。 化学。 Soc。 ,2022,144,10556-1 8。 N. Freed,M。J。J. J. opine。 生物技术。 ,2022,74,129-1 9。 N. Freund,A。I。Taylor,St.Franklin,N。Subraman,S.-Y。 Peak-Chew,A。M. Whitaker,B。D. Freudental,M。Abramov,P。Holliger,Nat。 化学。 ,2023,15,91-1 10。 J. R. D. D. Freund,G。G。G. G. Dalwal,P。Holly和A. I. Taylor,RSC Chem。 大。 ,2022,3,1209-1 11。 C. Liu,C。Cozens,F。Jaziri,J。Rozenski,A。Marshal,St.Dumbre,V。 am。 化学。S. Ye和J. Lehmann。,2022,50,4113-42。F. V.支持和K. T. Hughes,Proc。natl。学院。SCI。 U.S.A.,2017,114,4745-4750。 3。 K. Mohler和M. Ibba,Nat。 微生物。 ,2017,2,17117。 4。 J. M. M. Ogle和V. Ramakrishnan,Annu。 修订版 生物化学。 ,2005,74,129-1 5。 J. W. Chinese,A。Cropp,J。C. Anderson,M。 6。 M. A. Shandell,F。Cornish的太阳,2021,60,3455-3469。 7。 P. Ghosh,H。M. Cross,K。 am。 化学。 Soc。 ,2022,144,10556-1 8。 N. Freed,M。J。J. J. opine。 生物技术。 ,2022,74,129-1 9。 N. Freund,A。I。Taylor,St.Franklin,N。Subraman,S.-Y。 Peak-Chew,A。M. Whitaker,B。D. Freudental,M。Abramov,P。Holliger,Nat。 化学。 ,2023,15,91-1 10。 J. R. D. D. Freund,G。G。G. G. Dalwal,P。Holly和A. I. Taylor,RSC Chem。 大。 ,2022,3,1209-1 11。 C. Liu,C。Cozens,F。Jaziri,J。Rozenski,A。Marshal,St.Dumbre,V。 am。 化学。SCI。U.S.A.,2017,114,4745-4750。 3。 K. Mohler和M. Ibba,Nat。 微生物。 ,2017,2,17117。 4。 J. M. M. Ogle和V. Ramakrishnan,Annu。 修订版 生物化学。 ,2005,74,129-1 5。 J. W. Chinese,A。Cropp,J。C. Anderson,M。 6。 M. A. Shandell,F。Cornish的太阳,2021,60,3455-3469。 7。 P. Ghosh,H。M. Cross,K。 am。 化学。 Soc。 ,2022,144,10556-1 8。 N. Freed,M。J。J. J. opine。 生物技术。 ,2022,74,129-1 9。 N. Freund,A。I。Taylor,St.Franklin,N。Subraman,S.-Y。 Peak-Chew,A。M. Whitaker,B。D. Freudental,M。Abramov,P。Holliger,Nat。 化学。 ,2023,15,91-1 10。 J. R. D. D. Freund,G。G。G. G. Dalwal,P。Holly和A. I. Taylor,RSC Chem。 大。 ,2022,3,1209-1 11。 C. Liu,C。Cozens,F。Jaziri,J。Rozenski,A。Marshal,St.Dumbre,V。 am。 化学。U.S.A.,2017,114,4745-4750。3。K. Mohler和M. Ibba,Nat。 微生物。 ,2017,2,17117。 4。 J. M. M. Ogle和V. Ramakrishnan,Annu。 修订版 生物化学。 ,2005,74,129-1 5。 J. W. Chinese,A。Cropp,J。C. Anderson,M。 6。 M. A. Shandell,F。Cornish的太阳,2021,60,3455-3469。 7。 P. Ghosh,H。M. Cross,K。 am。 化学。 Soc。 ,2022,144,10556-1 8。 N. Freed,M。J。J. J. opine。 生物技术。 ,2022,74,129-1 9。 N. Freund,A。I。Taylor,St.Franklin,N。Subraman,S.-Y。 Peak-Chew,A。M. Whitaker,B。D. Freudental,M。Abramov,P。Holliger,Nat。 化学。 ,2023,15,91-1 10。 J. R. D. D. Freund,G。G。G. G. Dalwal,P。Holly和A. I. Taylor,RSC Chem。 大。 ,2022,3,1209-1 11。 C. Liu,C。Cozens,F。Jaziri,J。Rozenski,A。Marshal,St.Dumbre,V。 am。 化学。K. Mohler和M. Ibba,Nat。微生物。,2017,2,17117。4。J. M. M. Ogle和V. Ramakrishnan,Annu。修订版生物化学。,2005,74,129-15。J. W. Chinese,A。Cropp,J。C. Anderson,M。 6。 M. A. Shandell,F。Cornish的太阳,2021,60,3455-3469。 7。 P. Ghosh,H。M. Cross,K。 am。 化学。 Soc。 ,2022,144,10556-1 8。 N. Freed,M。J。J. J. opine。 生物技术。 ,2022,74,129-1 9。 N. Freund,A。I。Taylor,St.Franklin,N。Subraman,S.-Y。 Peak-Chew,A。M. Whitaker,B。D. Freudental,M。Abramov,P。Holliger,Nat。 化学。 ,2023,15,91-1 10。 J. R. D. D. Freund,G。G。G. G. Dalwal,P。Holly和A. I. Taylor,RSC Chem。 大。 ,2022,3,1209-1 11。 C. Liu,C。Cozens,F。Jaziri,J。Rozenski,A。Marshal,St.Dumbre,V。 am。 化学。J. W. Chinese,A。Cropp,J。C. Anderson,M。6。M. A. Shandell,F。Cornish的太阳,2021,60,3455-3469。7。P. Ghosh,H。M. Cross,K。 am。 化学。 Soc。 ,2022,144,10556-1 8。 N. Freed,M。J。J. J. opine。 生物技术。 ,2022,74,129-1 9。 N. Freund,A。I。Taylor,St.Franklin,N。Subraman,S.-Y。 Peak-Chew,A。M. Whitaker,B。D. Freudental,M。Abramov,P。Holliger,Nat。 化学。 ,2023,15,91-1 10。 J. R. D. D. Freund,G。G。G. G. Dalwal,P。Holly和A. I. Taylor,RSC Chem。 大。 ,2022,3,1209-1 11。 C. Liu,C。Cozens,F。Jaziri,J。Rozenski,A。Marshal,St.Dumbre,V。 am。 化学。P. Ghosh,H。M. Cross,K。am。化学。Soc。,2022,144,10556-18。N. Freed,M。J。J. J.opine。生物技术。,2022,74,129-19。N. Freund,A。I。Taylor,St.Franklin,N。Subraman,S.-Y。 Peak-Chew,A。M. Whitaker,B。D. Freudental,M。Abramov,P。Holliger,Nat。 化学。 ,2023,15,91-1 10。 J. R. D. D. Freund,G。G。G. G. Dalwal,P。Holly和A. I. Taylor,RSC Chem。 大。 ,2022,3,1209-1 11。 C. Liu,C。Cozens,F。Jaziri,J。Rozenski,A。Marshal,St.Dumbre,V。 am。 化学。N. Freund,A。I。Taylor,St.Franklin,N。Subraman,S.-Y。Peak-Chew,A。M. Whitaker,B。D. Freudental,M。Abramov,P。Holliger,Nat。化学。,2023,15,91-110。J. R. D. D. Freund,G。G。G. G. Dalwal,P。Holly和A. I. Taylor,RSC Chem。大。,2022,3,1209-111。C. Liu,C。Cozens,F。Jaziri,J。Rozenski,A。Marshal,St.Dumbre,V。am。化学。Soc。,2018,140,6690-612。C. A. A. Jerome,St。Hoshika,K。M。Bradley,St.A。natl。学院。SCI。 美国,2022,119,226111SCI。美国,2022,119,226111