潜热存储系统用于将局部环境的温度保持在恒定范围内。该过程通过嵌入形状稳定剂的相应相变材料在冻结/熔化过程中释放/存储潜热来实现,形状稳定剂是使相变材料保持熔融状态的支架。在这项工作中,选择了高硅 ZSM-5 及其改性版本作为分子和聚合物相变材料(即月桂酸和聚乙二醇)的形状稳定剂,使用溶剂辅助真空浸渍进行浸渍。主要微孔类似物(母体 ZSM-5 及其酸处理衍生物)对每种相变材料的吸收率限制为 40%。相比之下,富含中孔的类似物(在碱性条件下形成)的月桂酸浸渍率达到 65%,聚乙二醇浸渍率达到 70%,且在 70 ◦ C 时无任何泄漏,导致每种复合材料的潜热分别为 106.9 J/g 和 118.6 J/g。一个简单的原型实际应用表明,制备的富含中孔的 ZSM-5 月桂酸和聚乙二醇复合材料在太阳能加热下可将其温度保持比周围环境低 27% 和 22%,而在太阳能加热停止时可将其温度保持高 20% 和 26%。所提出的研究结果表明,中孔富集提高了这些低成本、无毒沸石形状稳定剂对相变材料的吸收,因此使它们成为解决家庭环境加热/冷却过程中能量损失的隔离材料的良好候选者。
1 日本大阪大学医学研究生院,2 日本大阪大学微生物疾病研究所实验基因组研究系,3 日本大阪国家心脑血管中心生物科学与遗传学系,4 日本大阪大学药学研究生院,5 日本大阪大学微生物疾病研究所,6 美国德克萨斯州休斯顿贝勒医学院药物发现中心,7 美国德克萨斯州休斯顿贝勒医学院病理学与免疫学系,8 美国德克萨斯州休斯顿贝勒医学院转化生物学与分子医学跨系项目,9 美国德克萨斯州休斯顿休斯顿大学克利尔莱克分校生物与生物技术系,10 日本东京大学医学科学研究所
1 日本大阪大学微生物疾病研究所实验基因组研究系,2 日本大阪大学医学研究生院,3 美国德克萨斯州休斯顿贝勒医学院药物发现中心,4 美国德克萨斯州休斯顿贝勒医学院病理学和免疫学系,5 日本大阪大学药学研究生院,6 日本名古屋名古屋市立大学医学研究生院比较与实验医学系,7 日本茨城县筑波市筑波大学医学院解剖学与胚胎学系,8 美国德克萨斯州休斯顿休斯顿大学克利尔莱克分校生物与生物技术系,9 日本东京大学医学科学研究所
非常短的串联重复序列在基因组分析中具有重要的遗传、进化和病理意义。本文,我们对 GRCh38 中的串联单核苷酸/二核苷酸/三核苷酸重复序列 (MNR/DNR/TNR) 进行了普查,我们统称其为“多束”。在人类基因组中,1.444 亿个核苷酸(4.7%)被多束占据,0.47 百万个单核苷酸被鉴定为多束铰链,即串联多束的断裂点。对普查的初步探索表明,AAC 多束的多束铰链位点和边界可能比其他多束区域具有更高的映射错误率。此外,我们揭示了近百种基因组特征的多束富集景观。我们发现 MNR、DNR 和 TNR 在杂项基因组特征(尤其是 RNA 编辑事件)的位置富集方面表现出明显差异。非规范和 C-to-U RNA 编辑事件在 MNR 内部和/或相邻处富集,而所有类别的 RNA 编辑事件在 DNR 中代表性不足。A-to-I RNA 编辑事件在多段中通常代表性不足。MNR 相邻范围内非规范 RNA 编辑事件的选择性富集为其真实性提供了负面证据。为了实现与多段相关的类似位置富集分析,我们开发了一个软件 Polytrap,它可以处理 11 个参考基因组。此外,我们将四种模式生物的多段编译成 Track Hub,它可以集成到 USCS Genome Browser 中作为官方轨道,以方便多段可视化。
摘要:光提供了一种控制材料物理行为的强大手段,但很少用于为活性物质系统提供动力和引导。我们展示了对被称为“skyrmion”的液晶拓扑孤子的光学控制,这种孤子是最近出现的可高度重构的无生命活性粒子,能够表现出诸如群居之类的突发集体行为。由于手性向列液晶具有扭曲的自然倾向,并且对电场和光反应灵敏,因此它可作为动态控制 skyrmion 和其他活性粒子的试验台。利用环境强度的非结构化光,我们展示了由振荡电场驱动并由光诱导障碍物和图案照明引导的大规模多面重构和集体 skyrmion 运动的解除。
1。al-Zeyara,S.A.,B。Jarvis和B.M.Mackey。2011。天然菌群对食物的抑制作用对富集肉汤中李斯特氏菌生长的生长。int。J.食物微生物。145:98 115。2。Andrews,W.H.,H。Wang,A。Jacobson和T. Hammack,细菌分析手册,第5章。 沙门氏菌。 2017。 3。 Bailey,J.S。 和N.A. Cox。 1992。 普遍的普遍肉汤,用于同时检测食品中沙门氏菌和李斯特菌。 J. 食物蛋白质。 55:256-259。 4。 Baranyi,J。和T.A. 罗伯茨。 1994。 一种动态方法来预测食物中细菌的生长。 int。 J. 食物微生物。 23:277-294。 5。 Brehm-Stecher,B.,C。Young,L.A。Jaykus和M.L. tortorello。 2009。 样本准备:被遗忘的开始。 J. 食物蛋白质。 72:1774-1789。 6。 Chen,J。,J。Tang,J。Liu,Z。Cai和X.Bai。 2012。 多路复用PCR的开发和评估,用于同时检测五种食源性病原体。 J. Appl。 微生物。 112:823-830。 7。 Chen,J。,J。Tang,A.K。 Bhunia,C。Tang,C。Wang和S. Hui。 2015。 开发多种病原体富集肉汤,以同时生长五种常见的食源性病原体。Andrews,W.H.,H。Wang,A。Jacobson和T. Hammack,细菌分析手册,第5章。沙门氏菌。 2017。 3。 Bailey,J.S。 和N.A. Cox。 1992。 普遍的普遍肉汤,用于同时检测食品中沙门氏菌和李斯特菌。 J. 食物蛋白质。 55:256-259。 4。 Baranyi,J。和T.A. 罗伯茨。 1994。 一种动态方法来预测食物中细菌的生长。 int。 J. 食物微生物。 23:277-294。 5。 Brehm-Stecher,B.,C。Young,L.A。Jaykus和M.L. tortorello。 2009。 样本准备:被遗忘的开始。 J. 食物蛋白质。 72:1774-1789。 6。 Chen,J。,J。Tang,J。Liu,Z。Cai和X.Bai。 2012。 多路复用PCR的开发和评估,用于同时检测五种食源性病原体。 J. Appl。 微生物。 112:823-830。 7。 Chen,J。,J。Tang,A.K。 Bhunia,C。Tang,C。Wang和S. Hui。 2015。 开发多种病原体富集肉汤,以同时生长五种常见的食源性病原体。沙门氏菌。2017。3。Bailey,J.S。 和N.A. Cox。 1992。 普遍的普遍肉汤,用于同时检测食品中沙门氏菌和李斯特菌。 J. 食物蛋白质。 55:256-259。 4。 Baranyi,J。和T.A. 罗伯茨。 1994。 一种动态方法来预测食物中细菌的生长。 int。 J. 食物微生物。 23:277-294。 5。 Brehm-Stecher,B.,C。Young,L.A。Jaykus和M.L. tortorello。 2009。 样本准备:被遗忘的开始。 J. 食物蛋白质。 72:1774-1789。 6。 Chen,J。,J。Tang,J。Liu,Z。Cai和X.Bai。 2012。 多路复用PCR的开发和评估,用于同时检测五种食源性病原体。 J. Appl。 微生物。 112:823-830。 7。 Chen,J。,J。Tang,A.K。 Bhunia,C。Tang,C。Wang和S. Hui。 2015。 开发多种病原体富集肉汤,以同时生长五种常见的食源性病原体。Bailey,J.S。和N.A.Cox。 1992。 普遍的普遍肉汤,用于同时检测食品中沙门氏菌和李斯特菌。 J. 食物蛋白质。 55:256-259。 4。 Baranyi,J。和T.A. 罗伯茨。 1994。 一种动态方法来预测食物中细菌的生长。 int。 J. 食物微生物。 23:277-294。 5。 Brehm-Stecher,B.,C。Young,L.A。Jaykus和M.L. tortorello。 2009。 样本准备:被遗忘的开始。 J. 食物蛋白质。 72:1774-1789。 6。 Chen,J。,J。Tang,J。Liu,Z。Cai和X.Bai。 2012。 多路复用PCR的开发和评估,用于同时检测五种食源性病原体。 J. Appl。 微生物。 112:823-830。 7。 Chen,J。,J。Tang,A.K。 Bhunia,C。Tang,C。Wang和S. Hui。 2015。 开发多种病原体富集肉汤,以同时生长五种常见的食源性病原体。Cox。1992。普遍的普遍肉汤,用于同时检测食品中沙门氏菌和李斯特菌。J.食物蛋白质。55:256-259。 4。 Baranyi,J。和T.A. 罗伯茨。 1994。 一种动态方法来预测食物中细菌的生长。 int。 J. 食物微生物。 23:277-294。 5。 Brehm-Stecher,B.,C。Young,L.A。Jaykus和M.L. tortorello。 2009。 样本准备:被遗忘的开始。 J. 食物蛋白质。 72:1774-1789。 6。 Chen,J。,J。Tang,J。Liu,Z。Cai和X.Bai。 2012。 多路复用PCR的开发和评估,用于同时检测五种食源性病原体。 J. Appl。 微生物。 112:823-830。 7。 Chen,J。,J。Tang,A.K。 Bhunia,C。Tang,C。Wang和S. Hui。 2015。 开发多种病原体富集肉汤,以同时生长五种常见的食源性病原体。55:256-259。4。Baranyi,J。和T.A. 罗伯茨。 1994。 一种动态方法来预测食物中细菌的生长。 int。 J. 食物微生物。 23:277-294。 5。 Brehm-Stecher,B.,C。Young,L.A。Jaykus和M.L. tortorello。 2009。 样本准备:被遗忘的开始。 J. 食物蛋白质。 72:1774-1789。 6。 Chen,J。,J。Tang,J。Liu,Z。Cai和X.Bai。 2012。 多路复用PCR的开发和评估,用于同时检测五种食源性病原体。 J. Appl。 微生物。 112:823-830。 7。 Chen,J。,J。Tang,A.K。 Bhunia,C。Tang,C。Wang和S. Hui。 2015。 开发多种病原体富集肉汤,以同时生长五种常见的食源性病原体。Baranyi,J。和T.A.罗伯茨。1994。一种动态方法来预测食物中细菌的生长。int。J.食物微生物。23:277-294。 5。 Brehm-Stecher,B.,C。Young,L.A。Jaykus和M.L. tortorello。 2009。 样本准备:被遗忘的开始。 J. 食物蛋白质。 72:1774-1789。 6。 Chen,J。,J。Tang,J。Liu,Z。Cai和X.Bai。 2012。 多路复用PCR的开发和评估,用于同时检测五种食源性病原体。 J. Appl。 微生物。 112:823-830。 7。 Chen,J。,J。Tang,A.K。 Bhunia,C。Tang,C。Wang和S. Hui。 2015。 开发多种病原体富集肉汤,以同时生长五种常见的食源性病原体。23:277-294。5。Brehm-Stecher,B.,C。Young,L.A。Jaykus和M.L.tortorello。2009。样本准备:被遗忘的开始。J.食物蛋白质。72:1774-1789。6。Chen,J。,J。Tang,J。Liu,Z。Cai和X.Bai。 2012。 多路复用PCR的开发和评估,用于同时检测五种食源性病原体。 J. Appl。 微生物。 112:823-830。 7。 Chen,J。,J。Tang,A.K。 Bhunia,C。Tang,C。Wang和S. Hui。 2015。 开发多种病原体富集肉汤,以同时生长五种常见的食源性病原体。Chen,J。,J。Tang,J。Liu,Z。Cai和X.Bai。2012。多路复用PCR的开发和评估,用于同时检测五种食源性病原体。J. Appl。微生物。112:823-830。7。Chen,J。,J。Tang,A.K。 Bhunia,C。Tang,C。Wang和S. Hui。 2015。 开发多种病原体富集肉汤,以同时生长五种常见的食源性病原体。Chen,J。,J。Tang,A.K。Bhunia,C。Tang,C。Wang和S. Hui。2015。开发多种病原体富集肉汤,以同时生长五种常见的食源性病原体。J. Gen. Appl。 微生物。 61:224-231。 8。 Cheng,C.M。,K。Van,W。Lin和R.M. 红宝石。 2009。 实时PCR 24小时快速方法检测食品中沙门氏菌的实时验证。 J. 食物蛋白质。 72:945-951。 9。 Cheng,C.M.,W。Lin,K.T。 van,L。phan,n.n。 tran和D. Farmer。 2008。 使用实时PCR快速检测食品中沙门氏菌。 J. 食物蛋白质。 71:2436-2441。 10。 国内和进口产品分配2014财年DFP&G#14-05/14-06。 “在木瓜方法中检测沙门氏菌的样品制备” pg。 50。http://inside.fda.gov:9003/downloads/programsinitiatives/food/fieldprograms/ucm400671.pdf11。 Doran,T。Hanes,D.,Weagent,S.,Torosian,S.,Burr,D.,Yoshitomi,K.,Jinneman,K.,Penev,R.,Adeyemo,O.,Williams-Hill,D。和P. Morin。 2013。 蕨类植物念珠筛查方法。 Fern-Mic.0004.02。 12。 冯,P.,S.D。 Weagant和K. Jinneman,细菌学分析手册,第4A章。 腹泻大肠杆菌。 2017。 13。 Gasanov,U.,D。Hughes和P.M.汉斯布罗。 2005。 剖析和鉴定李斯特氏菌和单核细胞增生李斯特菌的方法:综述。 fems微生物。 修订版 29:851–875。 14。 Gehring,A.G.,D.M。 Albin,又名 Bhunia,H。Kim,S.A。Reed和S. Tu。J. Gen. Appl。微生物。61:224-231。8。Cheng,C.M。,K。Van,W。Lin和R.M. 红宝石。 2009。 实时PCR 24小时快速方法检测食品中沙门氏菌的实时验证。 J. 食物蛋白质。 72:945-951。 9。 Cheng,C.M.,W。Lin,K.T。 van,L。phan,n.n。 tran和D. Farmer。 2008。 使用实时PCR快速检测食品中沙门氏菌。 J. 食物蛋白质。 71:2436-2441。 10。 国内和进口产品分配2014财年DFP&G#14-05/14-06。 “在木瓜方法中检测沙门氏菌的样品制备” pg。 50。http://inside.fda.gov:9003/downloads/programsinitiatives/food/fieldprograms/ucm400671.pdf11。 Doran,T。Hanes,D.,Weagent,S.,Torosian,S.,Burr,D.,Yoshitomi,K.,Jinneman,K.,Penev,R.,Adeyemo,O.,Williams-Hill,D。和P. Morin。 2013。 蕨类植物念珠筛查方法。 Fern-Mic.0004.02。 12。 冯,P.,S.D。 Weagant和K. Jinneman,细菌学分析手册,第4A章。 腹泻大肠杆菌。 2017。 13。 Gasanov,U.,D。Hughes和P.M.汉斯布罗。 2005。 剖析和鉴定李斯特氏菌和单核细胞增生李斯特菌的方法:综述。 fems微生物。 修订版 29:851–875。 14。 Gehring,A.G.,D.M。 Albin,又名 Bhunia,H。Kim,S.A。Reed和S. Tu。Cheng,C.M。,K。Van,W。Lin和R.M.红宝石。2009。实时PCR 24小时快速方法检测食品中沙门氏菌的实时验证。J.食物蛋白质。72:945-951。9。Cheng,C.M.,W。Lin,K.T。 van,L。phan,n.n。 tran和D. Farmer。 2008。 使用实时PCR快速检测食品中沙门氏菌。 J. 食物蛋白质。 71:2436-2441。 10。 国内和进口产品分配2014财年DFP&G#14-05/14-06。 “在木瓜方法中检测沙门氏菌的样品制备” pg。 50。http://inside.fda.gov:9003/downloads/programsinitiatives/food/fieldprograms/ucm400671.pdf11。 Doran,T。Hanes,D.,Weagent,S.,Torosian,S.,Burr,D.,Yoshitomi,K.,Jinneman,K.,Penev,R.,Adeyemo,O.,Williams-Hill,D。和P. Morin。 2013。 蕨类植物念珠筛查方法。 Fern-Mic.0004.02。 12。 冯,P.,S.D。 Weagant和K. Jinneman,细菌学分析手册,第4A章。 腹泻大肠杆菌。 2017。 13。 Gasanov,U.,D。Hughes和P.M.汉斯布罗。 2005。 剖析和鉴定李斯特氏菌和单核细胞增生李斯特菌的方法:综述。 fems微生物。 修订版 29:851–875。 14。 Gehring,A.G.,D.M。 Albin,又名 Bhunia,H。Kim,S.A。Reed和S. Tu。Cheng,C.M.,W。Lin,K.T。van,L。phan,n.n。tran和D. Farmer。2008。使用实时PCR快速检测食品中沙门氏菌。J.食物蛋白质。71:2436-2441。10。国内和进口产品分配2014财年DFP&G#14-05/14-06。“在木瓜方法中检测沙门氏菌的样品制备” pg。50。http://inside.fda.gov:9003/downloads/programsinitiatives/food/fieldprograms/ucm400671.pdf11。Doran,T。Hanes,D.,Weagent,S.,Torosian,S.,Burr,D.,Yoshitomi,K.,Jinneman,K.,Penev,R.,Adeyemo,O.,Williams-Hill,D。和P. Morin。2013。蕨类植物念珠筛查方法。Fern-Mic.0004.02。12。冯,P.,S.D。Weagant和K. Jinneman,细菌学分析手册,第4A章。腹泻大肠杆菌。2017。13。Gasanov,U.,D。Hughes和P.M.汉斯布罗。 2005。 剖析和鉴定李斯特氏菌和单核细胞增生李斯特菌的方法:综述。 fems微生物。 修订版 29:851–875。 14。 Gehring,A.G.,D.M。 Albin,又名 Bhunia,H。Kim,S.A。Reed和S. Tu。Gasanov,U.,D。Hughes和P.M.汉斯布罗。2005。剖析和鉴定李斯特氏菌和单核细胞增生李斯特菌的方法:综述。fems微生物。修订版29:851–875。14。Gehring,A.G.,D.M。 Albin,又名 Bhunia,H。Kim,S.A。Reed和S. Tu。Gehring,A.G.,D.M。Albin,又名 Bhunia,H。Kim,S.A。Reed和S. Tu。Albin,又名Bhunia,H。Kim,S.A。Reed和S. Tu。Bhunia,H。Kim,S.A。Reed和S. Tu。2012。大肠杆菌O157:H7,单核细胞增生李斯特菌,肠道沙门氏菌和小肠结肠炎的混合培养物富集。食物控制。26:269-273。15。Hitchins,A.D。,K。Jinneman和Y. Chen,细菌学分析手册,第10章。单核细胞增生李斯特菌的检测和枚举。2017。16。Jasson,V.,A。Rajkovic,J。Debevere和M. Uyttendaele。 2009。 单核细胞增生李斯特菌的复苏和生长的动力学作为选择适当的富集条件作为快速检测方法的先前步骤的工具。 食物微生物。 26:88-93。 17。 Kanki,M.,K。Seto,J。Sakata,T。Harada和Y. Kumeda。 2009。 使用普遍的preenrichment肉汤在食物样品中同时富集了产生大肠杆菌O157和O26的大肠杆菌O157和O26和沙门氏菌的富集。 J. 食物蛋白质。 72:2065-2070。Jasson,V.,A。Rajkovic,J。Debevere和M. Uyttendaele。2009。单核细胞增生李斯特菌的复苏和生长的动力学作为选择适当的富集条件作为快速检测方法的先前步骤的工具。食物微生物。26:88-93。17。Kanki,M.,K。Seto,J。Sakata,T。Harada和Y. Kumeda。2009。使用普遍的preenrichment肉汤在食物样品中同时富集了产生大肠杆菌O157和O26的大肠杆菌O157和O26和沙门氏菌的富集。J.食物蛋白质。72:2065-2070。
摘要:本文是关于一种新的营养培养基,专为隔离和富集而设计为一种有用的细菌,称为卤素阳离子细菌。这些细菌可以在盐水环境中找到,它们可以是中等的或极其卤素的。极度卤素需要在NaCl的15-30%之间才能生长,并且可以在不同的培养基中选择性地隔离。通过添加适合这些细菌生长的有机和无机养分来富含新培养基。它由淀粉,葡萄糖和酵母提取物(SGY)组成,并由人造海水支撑,提供类似于浓缩海水组成的盐的混合物,在这些盐分中,卤素阳离子细菌需要Na +才能生长,除了不同浓度的Na +,K +和Mg 2+。该媒介的目的是提供营养需求,与其他媒体相比,在短时间内可以刺激和支持高盐度条件下的生长。因此,用10%NaCl支持的(无机盐淀粉琼脂,Aspargin琼脂,燕麦粉琼脂和酵母提取物琼脂)对SGY培养基进行了测试,以10%NaCl支持,以增强卤代肌动杆菌的生长。根据结果,SGY培养基在短期孵育(4-6天)期间比其他不同的培养基(2-3周)实现了最高的细菌生长(4-6天)。因此,(SGY)培养基可以被视为传统用于研究卤素阳离子细菌的媒体的替代方法。[Manal Jameel Kiki。Life Sci J 2016; 13(1):65-71]。一种新的培养基,用于分离和富集卤素阳离子细菌。ISSN:1097-8135(PRINT) / ISSN:2372-613X(在线)。 http://www.lifesciencesite.com。 10。DOI:10.7537/MARSLSJ13011610。 关键字:卤素阳离子细菌,盐水环境,盐水培养基,极端卤素。ISSN:1097-8135(PRINT) / ISSN:2372-613X(在线)。http://www.lifesciencesite.com。10。DOI:10.7537/MARSLSJ13011610。 关键字:卤素阳离子细菌,盐水环境,盐水培养基,极端卤素。10。DOI:10.7537/MARSLSJ13011610。关键字:卤素阳离子细菌,盐水环境,盐水培养基,极端卤素。
大气中二氧化碳(CO 2)的浓度增加,而严格的温室气体(GHG)还原靶标需要开发适用于废物和废水领域的CO 2固相技术。这项研究解决了CO 2排放的减少,并增强了与CO 2富集厌氧消化剂(ADS)相关的沼气产量。通过将CO 2在0、0.3、0.6和0.9 m的分数注射到处理食物浪费或污水污泥的批处理广告中,检查了CO 2富集的益处。每日甲烷(CH 4)的食物废物生产增加了11-16%,在第一个24小时内,污水污泥的污泥为96-138%。据估计,污水污泥的潜在CO 2减少了8-34%,食物浪费的3-11%减少。广告利用其他CO 2的能力被策划了,这可以为CO 2流的现场隔离提供潜在的解决方案,同时增强可再生能源的产生。2014 Elsevier Ltd.保留所有权利。
摘要和解释在1945年,约翰斯顿1描述了一种媒介,该媒介可以在24个而不是48小时内成功地产生淋病。加速增长率主要是由于培养基的琼脂含量(固体性)降低。GC中碱是在1947年引入的,琼脂含量减少。研究了某些淋球菌菌株的生长速率时,发现含有生长因子谷氨酰胺和cocarbox- ylase的培养基可改善恢复。2,3从该发现中开发了补充B,A酵母浓缩物。 在12种不同培养基中的一项融合研究中,用GC中碱,血红蛋白和补充剂B制备的富集巧克力琼脂被证明是孤立淋病猪笼草的优越性。 difco vx柔软和bbl™isovitalex™富集是为取代酵母浓缩物添加剂而开发的化学定义补充剂。2,3从该发现中开发了补充B,A酵母浓缩物。在12种不同培养基中的一项融合研究中,用GC中碱,血红蛋白和补充剂B制备的富集巧克力琼脂被证明是孤立淋病猪笼草的优越性。difco vx柔软和bbl™isovitalex™富集是为取代酵母浓缩物添加剂而开发的化学定义补充剂。
