j。巴拉特(Barratt)从Alnylam,Arganx,Asterelas,Biocryst,Calliditas Therapeutics,Chinok,Chinok,Chinok,Dimerix,Dimerix,Galapagos,Veras,Veraros,Veraros,Vera Therapeutics,Vera Therapeutics,Vera Therapeutics and Observer获得了咨询/发言人FES;并毕业于Argaanx,Calliditas Therapeutics,Chinook,Galapagos,GSK,Omerus,Travere Therapeutics和Visterras。奇努克人,诺华,奥梅鲁斯,罗氏,斯塔达姆,特拉维尔和维拉治疗学。V. Duggaal和J.lo Aree雇员N. Schmit和J. Cheng是F. Hoffmann-La Roche Ltd. B.H.
骨关节炎(OA)是一种使人衰弱的疾病,没有批准的疾病改良疗法。在开发治疗的challenges中正在实现针对受影响关节的靶向药物。这导致了几个候选药物治疗OA的失败。在过去20年中,在反义寡核苷酸(ASO)技术中取得了重大进展,以实现在体外和体内靶向递送到组织和细胞的靶向递送。由于ASO能够结合特定的基因区域并调节蛋白质翻译,因此它们可用于纠正与某些疾病相关的异常内源机制。ASO可以通过关节内注射在本地传递,并可以通过天然的细胞摄取机制进入细胞。尽管如此,ASO尚未在OA治疗的临床试验中成功测试。最近对ASO的化学方法进一步改善了细胞摄取和降低的毒性。是基于锁定的核酸(LNA)的ASO,在肝炎和血脂异常等疾病的临床试验中显示出令人鼓舞的结果。最近,基于LNA的ASO在体外和体内都经过了OA的治疗性测试,并且有些在临床前OA动物模型中显示出有希望的联合保护作用。为了加速OA临床试验环境中ASO疗法的测试,需要进一步研究递送机制。在本评论文章中,我们讨论了目前正在临床前测试中的病毒,粒子,生物材料和化学修饰的疗法的机会。我们还解决了基于ASO的OA治疗疗法的临床翻译中的潜在障碍,例如与OA动物模型相关的局限性以及药物毒性的挑战。总的来说,我们回顾了已知的内容以及加速基于ASO的OA治疗疗法的翻译。
代替国际农业| Semmelweisstrasse 3 | 82152 planegg/steinkirchen |德国电话:+49 899 363 0 |传真:+49 89 899 363 11 |电子邮件:info@metabion.com | www.metabion.com
摘要。糖尿病是一种慢性代谢疾病,通常与诸如心脏疾病,肾病和神经病等并发症有关,其发病率每年都在增加。转录因子Forkhead Box M1(FOXM1)在糖尿病及其并发症的发展中起重要作用。本研究旨在回顾FOXM1与糖尿病发病机理及其并发症之间的关联。FOXM1可能通过调节细胞生物学过程,例如细胞周期,DNA损伤修复,细胞分化和上皮 - 间质转变来参与糖尿病的发育和发展及其并发症。FOXM1参与了胰岛素分泌和胰岛素抵抗的调节,FOXM1通过调节胰岛素相关基因和信号传导途径的表达来影响胰岛素分泌。 FOXM1参与糖尿病的炎症反应,FOXM1可以调节与炎症反应和免疫细胞相关的关键基因,从而影响炎症反应的发生和发展;最后,FOXM1参与了糖尿病并发症的调节,例如心血管疾病,肾病和神经病。总之,转录因子FOXM1在糖尿病的发育及其并发症中起重要作用。未来的研究应探讨FOXM1在糖尿病中的机制,并找到FOXM1的新靶标作为对糖尿病及其并发症的潜在治疗方法。
寡核苷酸疗法彻底改变了制药行业的格局。它们是一类由短链 RNA 或 DNA 组成的药物,可以通过合成操纵来改变多种致病蛋白的表达。直到最近,市场上大多数经美国食品药品监督管理局 (FDA) 批准的寡核苷酸都用于治疗罕见疾病。然而,用于治疗心血管疾病的 inclisiran 于 2021 年获得批准,现在凸显了它们治疗多种常见临床适应症的潜力。Inclisiran 展示了寡核苷酸带来的机遇,它是一种针对大量患者群体的治疗方式,针对多种常见疾病,包括心血管疾病、肿瘤学和代谢紊乱。然而,必须承认,当前的寡核苷酸供应链是不可持续的,在扩大规模方面面临重大障碍,凸显了需要解决的关键供需缺口。
摘要:rhamnolipid(RL)可以抑制大肠杆菌O157:H7的生物膜形成,但关联机制仍然未知。我们在这里对用RL和未经处理的培养物处理的培养物进行了比较生理和转录分析,以阐明RL可能抑制大肠杆菌O157:H7中生物FM形成的潜在机制。抗生物膜测定法显示,用0.25-1 mg/ml的RL处理抑制了超过70%的大肠杆菌O157:H7生物膜形成能力。细胞水平的生理分析表明,高浓度的RL显着降低了外膜的疏水性。大肠杆菌细胞膜完整性和渗透性也受到RL的显着影响,这是由于细胞膜脂多糖(LPS)的释放增加。此外,与未经处理的细胞相比,在用RL处理的细胞中,转录组促进显示了2601个差异表达的基因(1344个上调和1257个下调)。功能富集分析表明,RL治疗负责负责LPS合成,外膜外蛋白合成和型脂肪组装以及型多N-乙酰基 - 葡萄糖胺生物合成和基因所需的下调基因。总而言之,RL处理抑制了大肠杆菌O157:H7生物膜形成,通过修饰关键的外膜表面特性和粘附基因的表达水平。
仅用于研究使用。不适用于诊断程序。©2023 Thermo Fisher Scientific Inc.所有商标均为Thermo Fisher Scientific Inc.或其子公司的财产。此信息作为Thermo Fisher Scientific Inc.产品的功能的一个例子。无意以任何可能侵犯他人知识产权的方式来鼓励使用这些产品。规格,条款和定价可能会发生变化。并非所有产品都在所有国家 /地区提供。请咨询您的当地销售代表以获取详细信息。SL002183-EN 0723
摘要 尽管适体本身或作为适体-药物偶联物在临床前和临床研究中已表现出出色的靶标特异性,但它们的体内组织药代动力学 (PK) 分析仍然存在问题。我们旨在研究基于图像的正电子发射断层扫描 (PET) 在评估寡核苷酸的体内组织 PK、靶标特异性和适用性方面的效用。为此,使用互补寡核苷酸平台通过碱基对杂交合成了具有 erb-b2 受体酪氨酸激酶 2 (ERBB2) 特异性结合的氟-18 标记适体。为了研究体内组织的 PK 和特性,在正常和肿瘤异种移植小鼠中评估了体内 PET 成像在开发基于寡核苷酸的药物中作为评估工具的有效性。 ERBB2-cODN-idT-APs-[ 18 F]F ([ 18 F] 1 )静脉注射后,除最初的脑和肌肉外,在大多数组织中均有显著而快速的摄取;摄取量在心脏最高,其次是肾脏、肝脏、肺、胆囊、脾脏和胃。排泄的主要途径是通过肾脏~77.8%,而总剂量的约8.3%是通过胆道。
摘要:测试了单个或有机肥料中两种生物隔离剂的性能,以确定它们对植物生长和植物生长的影响和在正常和不利的领域条件下的影响,例如低pH值和低含量的羊膜菌P. arbuscular mycorrhiza fungi(glomus of Glormus; amf; amf; amf; DSM16656在两年的土壤pH值和可用养分的两年实验中应用于大麦。谷物产量; p,n,k和mg的内容;测量和土壤微生物参数。通过矿物肥料,有机肥料,AMF和K. radicincitans的施用,谷物产量和养分的含量显着增加,以及在正常生长条件下,有机肥料与AMF和K. radicincitans的合并应用在正常生长条件下。在低ph和低P条件下,只有有机肥料与K. radicincitans和AMF的有机肥料合并的合并可以增加对照中大麦的谷物产量和营养成分。
在过去的几十年中,已经采用了许多技术来量化微生物生态学中环境样本或合成群落中特定微生物的种群大小或微生物群。这些包括但不限于直接荧光显微镜(EFM)(Caron,1983; Kepner&Pratt,1994),流动细胞仪(FCM)(FCM)(Deng等,2019; Frossard et al。,2012; Frossard等,2016; Frossard等,2016),dell。 2003), catalyzed reporter deposition-FISH (CARD-FISH, (Eickhorst & Tippkotter, 2008; Schippers et al., 2005), phospholipid quanti- fication (Phospholipid-derived fatty acids, PLFAs) (Frostegard et al., 1991; White et al., 1979), and real-time quantitative polymerase chain reaction (qPCR) (Brankatschk等,2012; Han等,2020; Han等,2016; Hartmann等,2014; Smith&Osborn,2009)