摘要 尽管显示技术取得了进步,但许多现有应用仍依赖于使用较旧的、有时是过时的显示器收集的人类感知的心理物理数据集。因此,存在一个基本假设,即此类测量可以延续到更现代技术的新观看条件中。我们已经进行了一系列心理物理实验,以使用最先进的 HDR 显示器探索对比敏感度,不仅考虑了刺激的空间频率和亮度,还考虑了它们周围的亮度水平。从我们的数据中,我们得出了一个新颖的环绕感知对比敏感度函数 (CSF),它可以更准确地预测人类对比敏感度。我们还提供了一个实用版本,它保留了我们完整模型的优势,同时实现了轻松的向后兼容性,并在许多使用 CSF 模型的现有应用程序中始终产生良好的结果。我们展示了使用源自 CSF 的传递函数、色调映射和改进的视觉差异预测准确度进行有效 HDR 视频压缩的示例。
[1]在这个新的放射学时代,计算机断层扫描已成为头部受伤患者初步评估的基本主要选择。在检测颅骨骨折和急性颅内出血方面,它也很容易获得,更快且高度准确。[2]基于50名被转诊为NCCT头部调查的患者,根据调查的50名患者,基于便利性抽样进行了一项前瞻性研究。进行了研究以确定临床发现,断裂的类型和骨折部位。这项研究得出的结论是,NCCT头部调查是最佳的脑损伤史患者的主要方式。关键字:NCCT头,MDCT,断层扫描,重建。简介CT扫描代表计算机断层扫描。这是一种特殊的断层扫描形式,其中计算机用于对层析成像平面或切片进行数学重建。1971年10月1日,在由Godfrey N. Hounsfield爵士开发的原型扫描仪上进行了涉嫌进行额叶肿瘤的患者进行的第一次临床计算机断层扫描(CT)扫描。扫描仪产生了具有80 x 80矩阵的图像。[3] 1974年,罗伯特·史蒂文·莱德利(Robert Steven Ledley)博士给了整个 -
传统的推荐系统(例如矩阵分解方法)主要集中于学习共享密集的设备空间,以表示项目和用户偏好。sub-sub-sub,诸如RNN,GRUS和最近的序列模型在顺序推荐的任务中出现并出色。此任务需要了解用户历史交互中存在的顺序结构,以预测他们可能喜欢的下一个项目。基于大型语言模型(LLM)在各种任务中的成功,最近使用在庞大的文本中鉴定的LLM进行了研究,以进行顺序建议。要使用LLM进行顺序推荐,用户交互的历史记录和模型对下一个项目的预测都以文本形式表示。我们提出了CALREC,这是一种两阶段的LLM登录框架,它使用两种对比性损失和语言建模损失的混合物以两位较高的方式对经过验证的LLM进行了验证:LLM首先是在来自多个域中的数据混合物上进行的,随后是一个目标域芬特芬特登录。我们的模型极大地胜过许多最先进的基准( + 37%的回忆@1和ndcg@10中的24%),我们的系统消融研究表明,(i)两种固定阶段至关重要,当结合使用时,我们在相反的绩效中获得了相似的绩效,以及(ii)对比的一致性在目标域中有效地探索了我们的实验。
传统命名实体识别(NER)模型通常是为特定于域的数据集而设计的,并且仅限于固定的预定义类型,这是难以推广到新域的困难。最近,基于及时的生成方法可以通过在不同的数据集上共同培训模式,并通过及时说明提取指定的实体,以减轻这种约束。但是,由于自回旋结构,这些方法无法直接建模实体跨度,并且会遭受缓慢的分解。为了解决这些问题,我们通过对比度学习(SUNER)提出了一个基于新颖的S基础的Unified Ner框架,该框架将文本跨度和实体类型表示在共享的语义空间中保持一致,以并行提取实体。具体来说,我们首先提取跨度,而无需考虑实体类型以更好地概括跨数据集。然后,通过利用构图的学习和精心设计的实体标记结构的力量,我们将候选人跨度及其textual类型描述映射到相同的矢量代表空间中,将其映射到跨多个方面的区分实体。对监督和零/少数拍摄设置进行了广泛的实验表明,与以前的最先进的统一NER模型相比,实现的Suner模型可实现更好的性能和更高的效率。
最近,几种方法探索了多对比磁共振成像(MRI)超分辨率(SR)的潜力,并获得了优于单对比SR方法的结果。但是,现有方法仍然存在两个缺点:(1)它们只能解决固定的Inter Intermpling量表,例如2×,3×和4倍,它们需要培训并存储临床上每个UPSMPLAING SCALE的相应模型。(2)他们在采用方形窗口(例如8×8)变形金刚网络档案时缺乏直接交互,这导致长范围依赖性的建模不足。此外,参考图像和目标图像之间的关系尚未完全挖掘。为了解决这些问题,我们开发了一个新颖的网络,用于多对比度MRI任意规模的SR,被称为McASSR。具体来说,我们设计了矩形窗口交叉注意变压器,以在MR图像中建立长期依赖性,而无需增加计算复杂性并完全使用参考信息。此外,我们提出了参考吸引的隐式关注,作为提升的模式,通过隐式神经表示实现了任意规模的超分辨率,进一步融合了参考图像的补充信息。在公共和临床数据集上进行了广泛而全面的实验表明,我们的MCASSR比SOTA方法产生了卓越的性能,这表明其在临床实践中的巨大潜力。代码将在https://github.com/guangyuankk/mcassr上找到。
抽象人工智能(AI)辅助疾病预测由于其支持临床决策的能力而获得了广泛的研究兴趣。现有作品主要将疾病预测作为多标签分类问题,并使用历史电子病历(EMR)来培训监督模型。然而,在现实世界中,这种纯粹的数据驱动方法提出了两个主要挑战:1)长尾巴问题:常见疾病的EMR过多,并且对于罕见疾病的EMR不足,因此对不平衡的数据集进行培训可能会导致在诊断中忽略偏见模型的偏见模型; 2)很容易误诊疾病:某些疾病很容易区分,而另一些疾病则更加困难。一般分类模型而不强调容易诊断的疾病可能会产生错误的预测。为了解决这两个问题,我们在本文中提出了一种医学知识增强的对比学习方法(MKECL)方法。MKECL将医学知识图和医学许可考试纳入建模中,以弥补有关稀有疾病的足够信息;为了处理难以诊断的疾病,MKECL引入了一种对比度学习策略,以分离容易被误诊的疾病。此外,我们建立了一个名为Jarvis-D的新基准,其中包含从各种医院收集的临床EMR。对实际临床EMR的实验表明,拟议的MKECL优于现有的疾病预测方法,尤其是在几乎没有射击和零拍的情况下。
数据增强方法是手工设计或基于模型的。手工设计的方法,例如视觉效果中的颜色变化和随机裁剪或DNA序列中的突变,需要人类输入,并且通常是特定于数据的,并且与复杂的数据进行了斗争,在这些数据中,小变化显着影响语义。语义与无关的方法(例如添加噪声)存在,但并不总是有效的。此外,手工设计的方法需要更多样本来减轻微妙的语义变化中的风险,这在诸如生物学之类的昂贵域中挑战。使用生成模型(VAE,GAN,扩散)的基于模型的方法改善了视力任务和监督学习的训练,但面临着对多样性,概括和对外部数据的依赖的担忧。
摘要。本文提出了一种检索训练有素的图像生成洛拉(低级别适应性)模型的方法。此搜索算法采用单个任意图像输入,然后将模型在其中将图像转换为与输入映像相同的样式中的模型。我们使用三胞胎网络(带有三重损失的暹罗网络)采用了对比度学习方法。我们在预采用的洛拉模型上创建了一个示例图像集并执行了样式转移。使用这些传输的图像,对网络进行了微调,以通过其样式而不是通过其主题来计算距离;对于由不同的Lora模型转化的同一主题的一对图像对成对的差异很大,对于由同一LORA模型转换的不同下ject的图像对。通过准确评估任务评估了搜索算法,这些任务估计是否通过对模型进行排名的相同模型和用户实验进行了转换。实验结果表明,精细调整至关重要,样本图像集的多样性也很重要。
抽象的对比表示学习已被证明是图像和视频的有效自我监督的学习方法。最成功的方法是基于噪声对比估计(NCE),并将实例的不同视图用作阳性,应与其他称为否定的实例形成对比,被称为噪声。但是,数据集中的几个实例是从相同的分布中汲取的,并共享基本的语义信息。良好的数据表示应包含实例之间的关系,语义相似性和差异性,即通过将所有负面因素视为噪声来损害对比学习。为了避免此问题,我们提出了一种新的对比度学习的表述,使用称为“相似性对比估计(SCE)”的实例之间的语义相似性。我们的训练目标是一个软的对比目标,它使阳性更接近,并估计根据其学到的相似性推动或提取负面实例的连续分布。我们在图像和视频表示学习方面均通过经验验证我们的方法。我们表明,SCE在ImageNet线性评估方案上的最低时期时代的较少时代的时期与最低的时期进行了竞争性,并且它概括为几个下游图像任务。我们还表明,SCE达到了预处理视频表示的最新结果,并且学习的表示形式可以推广到下游任务。源代码可用:https://github.com/juliendenize/eztorch。
背景:已提出合成计算机断层扫描(SCT),并越来越多地采用以实现基于磁共振成像(MRI)的放射疗法。深度学习(DL)最近证明了从固定MRI采集中生成准确的SCT的能力。但是,由于模型概括不良,MRI方案可能会随着时间的推移而随着时间的流逝而变化或不同。目的:研究域随机化(DR)以增加脑SCT生成DL模型的概括。方法:收集了95例接受RT患者的CT和相应的T 1加权MRI,带有 /无对比度,T 2加权和FLAIR MRI,考虑到可以研究概括的未见序列的能力。“基线”生成对抗网络进行了 /没有天赋序列的训练,以测试模型在没有DR的情况下的性能。基于SCT的剂量计划的图像相似性和准确性对CT进行了评估,以选择针对基线的表现最佳的DR方法。结果:基线模型在FLAIR上的性能最差,平均绝对误差(MAE)= 106±20.7 HU(平均值±σ)。在MAE = 99.0±14.9 HU的DR模型中,Flair上的性能显着提高,但仍然不如基线 + Flair模型的性能(MAE = 72.6±10.1 HU)。同样,对于DR VS基线,获得了γ速率的提高。结论:DR提高了仅在获得的MRI上训练的未见序列上的图像相似性和剂量准确性。DR使模型更加稳健,从而减少了在未见序列上应用模型时重新训练的需求,并且无法进行重新训练。