抽象人工智能(AI)辅助疾病预测由于其支持临床决策的能力而获得了广泛的研究兴趣。现有作品主要将疾病预测作为多标签分类问题,并使用历史电子病历(EMR)来培训监督模型。然而,在现实世界中,这种纯粹的数据驱动方法提出了两个主要挑战:1)长尾巴问题:常见疾病的EMR过多,并且对于罕见疾病的EMR不足,因此对不平衡的数据集进行培训可能会导致在诊断中忽略偏见模型的偏见模型; 2)很容易误诊疾病:某些疾病很容易区分,而另一些疾病则更加困难。一般分类模型而不强调容易诊断的疾病可能会产生错误的预测。为了解决这两个问题,我们在本文中提出了一种医学知识增强的对比学习方法(MKECL)方法。MKECL将医学知识图和医学许可考试纳入建模中,以弥补有关稀有疾病的足够信息;为了处理难以诊断的疾病,MKECL引入了一种对比度学习策略,以分离容易被误诊的疾病。此外,我们建立了一个名为Jarvis-D的新基准,其中包含从各种医院收集的临床EMR。对实际临床EMR的实验表明,拟议的MKECL优于现有的疾病预测方法,尤其是在几乎没有射击和零拍的情况下。
主要关键词