摘要。知识图完成(KGC,也称为链接预测)旨在预测知识图中的缺失实体和关系(kgs)。知识图嵌入(KGE)技术已被证明对链接预测有效。术语,一系列基于卷积的神经网络(CNN)基于模型(例如,凸出及其扩展模型)已获得了极好的链接预测。但是,尚未同时考虑和增强使用CNN的链接预测重要的几个方面,这显着限制了这些模型的性能。在本文中,我们探讨了一个基于CNN的有效KGE模型。我们调查并发现了四个极大的方面,这些方面对引体具有强大的影响:实体和嵌入式,实体与 - 关系相互作用方法,CNN结构和损失函数。基于上述四个方面的优化,我们提出了一种称为CONVEICF的新型KGE方法。通过广泛的实验,我们发现传达的FB15K-237和WN18RR数据集优于先前的最新链接预测基准。尤其是,ConveICF获得@10分别比FB15K-237和WN18RR数据集的10分的10分和6.5%。此外,通过深入的典范,我们观察到一种有趣的现象,并且重要的是,只要添加掉落操作,就可以在KGE中非常常见的1-N评分技术得到改善。我们的代码可在https://github.com/neu-idke/conveicf上找到。
主要关键词