Loading...
机构名称:
¥ 1.0

机器学习的工作原理与人类训练大脑的方式类似。一般来说,先前的经验通过激发大脑中的特定神经细胞并增加它们之间的链接权重来为大脑做好准备。机器学习还通过对训练集进行训练,不断改变模型中的权重来完成分类任务。它可以进行大量的训练,并在特定领域实现比人脑更高的识别准确率。在本文中,我们提出了一种主动学习框架,称为基于变分深度嵌入的主动学习 (VaDEAL),作为一种以人为中心的计算方法,以提高诊断肺炎的准确性。由于主动学习 (AL) 通过标记最有价​​值的查询来实现标签高效学习,我们提出了一种新的 AL 策略,该策略结合了聚类来提高采样质量。我们的框架由 VaDE 模块、任务学习器和采样计算器组成。首先,VaDE 对整个数据集执行无监督的维度减少和聚类。端到端任务学习器在训练模型的目标分类器的同时,获取 VaDE 处理样本的嵌入表示。采样计算器将通过 VaDE 计算样本的代表性,通过任务学习计算样本的不确定性,并通过计算当前样本和先前样本之间的相似性约束来确保样本的整体多样性。通过我们新颖的设计,不确定性、代表性和多样性分数的组合使我们能够选择最具信息量的样本进行标记,从而提高整体性能。通过在大型数据集上进行的大量实验和评估,我们证明了我们提出的方法优于最先进的方法,并且在肺炎诊断中具有最高的准确率。

基于变分深度嵌入的主动学习用于肺炎诊断

基于变分深度嵌入的主动学习用于肺炎诊断PDF文件第1页

基于变分深度嵌入的主动学习用于肺炎诊断PDF文件第2页

基于变分深度嵌入的主动学习用于肺炎诊断PDF文件第3页

基于变分深度嵌入的主动学习用于肺炎诊断PDF文件第4页

基于变分深度嵌入的主动学习用于肺炎诊断PDF文件第5页

相关文件推荐

2021 年
¥1.0
2024 年
¥1.0
2021 年
¥1.0
2021 年
¥1.0
2021 年
¥1.0