Loading...
机构名称:
¥ 9.0

摘要最多 350 个字:(请输入)交互式推荐旨在适应和学习项目和用户之间的动态交互,以实现推荐系统的响应性和准确性。强化学习天生有利于应对动态/交互环境,因此在交互式推荐研究中引起了越来越多的关注。然而,大多数现有工作倾向于学习固定的用户兴趣,而忽略了它们本质上是动态的。论文首先介绍推荐系统及其应用。然后是详细的文献综述,涵盖三个主要相关领域:序列感知推荐、交互式推荐和知识感知推荐系统。论文还回顾了基于强化学习的推荐系统应用,并讨论了其优点和缺点。之后,本论文报告了关于交互式推荐系统的一般问题陈述和要解决的挑战,包括用户动态兴趣建模、强化学习优化的计算成本以及基于强化学习的推荐系统的性能下降。特别是,我们提出了一套通过强化学习改进交互式推荐的技术和模型。我们提出了一种学习分布式交互嵌入的新模型,该模型可以以紧凑而富有表现力的方式捕获用户的动态兴趣。受到图卷积网络和知识感知推荐的最新进展的启发,我们设计了一个知识引导的深度强化学习 (KGRL) 模型,以利用强化学习和知识图谱的优势进行交互式推荐。该模型在演员-评论家网络框架内实现。它维护一个本地知识网络来指导训练阶段的决策过程,并采用注意力机制来发现项目之间的长期语义。为了降低强化学习的计算成本,我们进一步设计了一种增强优化策略,缩小了更新步骤的空间并改变了奖励函数。我们在模拟在线环境中对提出的三种方法进行了全面的实验,结果表明,与文献中的基线和最先进方法相比,我们的模型的性能得到了持续的改进。最后,本论文讨论了交互式推荐系统的未来工作和潜在的进一步改进。

知识引导的深度强化学习用于交互式推荐

知识引导的深度强化学习用于交互式推荐PDF文件第1页

知识引导的深度强化学习用于交互式推荐PDF文件第2页

知识引导的深度强化学习用于交互式推荐PDF文件第3页

知识引导的深度强化学习用于交互式推荐PDF文件第4页

知识引导的深度强化学习用于交互式推荐PDF文件第5页

相关文件推荐

2025 年
¥18.0