订单号 51028130 51028131 51028132 型号 IGS60 IGS100 IGS180 对流技术 重力对流 重力对流 重力对流 温度范围 (°C) 环境温度 +5 °C 至 75 °C 环境温度 +5 °C 至 75 °C 环境温度 +5 °C 至 75 °C 37°C 时的空间温度偏差 ± 0.6 °C ± 0.6 °C ± 0.6 °C 37°C 时随时间的温度偏差 ± 0.2 °C ± 0.2 °C ± 0.2 °C 占地面积 (m2 / sqft) 0.3 / 3.2 0.36 / 3.9 0.47 / 5.1 腔体容积 (L / cuft) 75 / 2.6 117 / 4.0 194 / 6.85 内部尺寸 (mm / 英寸(宽 x 高 x 深))
地球上的生命与天气和对流风暴息息相关,从它们提供的淡水到它们产生的极端天气。这些风暴在地球表面和高层大气(对流层)之间输送水和空气,这种特性通常称为对流质量通量 (CMF)。热带对流风暴中的水分输送通过影响风暴强度、降水率、对流层上部的湿润和大规模水分循环,在地球的天气和气候系统中发挥着关键作用,并且由于气候变化而似乎处于流动状态。人们对其中大部分活动仍知之甚少,尤其是对于可能影响大片地区和大量人口的极端天气事件。对对流物质流的系统测量将改善风暴强度的表示,并有助于限制天气和气候模型中的高云反馈,从而有可能挽救全球的生命和财产。
环形翅片是一种特殊的机械传热装置,其径向变化,经常用于应用热工程。在工作装置中添加环形翅片可增加与周围流体接触的表面积。翅片安装的其他潜在领域包括散热器、发电厂热交换器,并且它在可持续能源技术中也发挥着重要作用。本研究的主要目的是引入一种有效的环形翅片能量模型,该模型受热辐射、磁力、导热系数、加热源的影响,并添加了改进的 Tiwari-Das 模型。然后,进行数值处理以获得所需的效率。从结果可以看出,通过加强 α 1 、α 2 和 γ 1 的物理强度以及使用三元纳米流体使其效率更高,翅片效率显著提高。添加加热源 Q 1 使翅片效率更高,辐射数更有利于冷却它。在整个分析过程中观察到三元纳米流体的作用占主导地位,并使用现有数据验证了结果。
本文介绍了威廉姆森纳米流体和普通纳米流体在旋转锥体延伸表面上流动时非稳态动力学热分布增强的数值研究。回旋微生物的生物对流和磁场热辐射通量是这项研究的重要物理方面。沿 x 和 y 方向考虑速度滑移条件。通过相似函数将主要公式转换为常微分形式。通过使用 Matlab 代码对 Runge-Kutta 程序进行数值求解,解决了五个具有非线性项的耦合方程。浮力比和生物对流瑞利数的参数降低了 x 方向的速度。与粘度成正比的滑移参数降低了流速,从而导致温度升高。此外,温度随着磁场强度、辐射热传输、布朗运动和热泳动值的升高而升高。
摘要:以降水为导向的冷池在组织热带对流中起着重要作用。先前在辐射对流平衡(RCE)设置中对热带对流的研究发现,冷池倾向于相互碰撞并触发新的对流。目前尚不清楚为什么大多数冷池没有足够的空间就可以消散而没有碰撞。,我们将其解释为较小的平均冷池半径Req,而最大电势半径r最大。后者表示冷池的浮力所需的半径是通过表面加热来消除的。应用能量平衡约束会导致其比率R Max / R EQ的分析解决方案,该解决方案取决于Bowen比率,表面降水量 - 蒸发比和雨水沉积效率。该理论预测,在海洋热带对流方面,鲍恩比率远小于一个,r eq不能达到最大,而冷池必须经常碰撞。使用不同的降雨蒸发率,大型模拟支持了这一预测。在第二部分中,我们将能量平衡约束与对流生命周期模型相结合,以获得平均冷池半径Req的理论。
摘要随着海冰的消失,北极中开放海洋深对流的出现将增强冰的流失。在这里,使用36个先进的气候模型和每个模型最多50个合奏成员,我们表明北极深对流在最强的变暖场景下很少见。到2100年,只有五个模型在对流到对流,而在奔跑中间有11个对流。所有人最深的混合层位于东欧亚盆地。当该区域经过盐分并增加风速时,模型对流;然而,大多数型号都在清新。没有对流的模型具有最强的卤素和最稳定的海冰,但是那些最早失去冰的模型是因为它们强烈变暖的大西洋水 - 没有持久的深度对流:它闭上了本世纪中期。卤素和大西洋水的变化迫切需要在模型中更好地限制。
对流在各种天然和人为的过程中起着至关重要的作用,从而可以通过流体运动有效地传热。本综合指南提供了对流的可访问概述,其中包含实践示例,以说明其原理。,它是寻求阐明这一基本科学概念的教育工作者的宝贵资源。引人入胜且信息丰富,该指南非常适合增强对热动态的理解。对流涉及通过流体(液体或气体)的移动加热的转移,因为加热颗粒会上升,而较冷的颗粒下沉,从而产生圆形流动。这个过程对于理解自然现象和技术应用至关重要,这是物理,气象学和工程学的关键概念。对流的一个经典例子是在炉子上加热水,热水升至表面,冷水沉入底部,形成连续的循环,从而有效地在整个水中转移热量。对流传热的公式可以表示为q = haΔt,强调了诸如传热速率,对流传热系数,表面积和温度差等因素的重要性。这22个对流示例的汇编展示了从日常家庭活动到大规模环境模式的不同环境中的基本过程。冷却和冷凝时,温暖的空气会升起,形成云和降水。同样,随着热量从其表面散发的,一杯咖啡会冷却,而森林通过吸收热量并引起空气运动来调节气候。从沸水到洋流,大气循环,房屋中的散热器,热气球,海风,地球的披风对流,加热汤,熔融冰,熔岩灯,太阳能电池板,冰箱线圈,汽车辐射器和空调,每个例子都在行动中表明了暴力。在烤箱中,热空气循环均匀地煮食物,就像间歇泉爆发地下水被地热能加热一样。板块构造是由于地球核心的热量引起的,导致构造板的运动。房间风扇循环空气以调节室温,人体血液循环通过对流调节体温。对流不仅限于科学概念;它在我们的日常经历中起着作用。示例包括在炉灶上烹饪,洗热水淋浴,使用烤面包机,地板加热系统以及在生产线上晾干衣服。在现实情况下,对流冷却笔记本电脑,铁衣,在建筑物中提供自然通风,加热茶水和使用壁炉。对流还塑造大气现象,例如陆地和海风,云层,季风风,飓风地层以及山和山谷的微风。通过外部手段(例如风扇或泵)运动在工程,气象学和环境研究等各个领域都起着至关重要的作用。了解这些类型对于设计过程和系统至关重要。例子包括在沸水中的自然对流,供暖,海洋电流,冰箱中的空气循环以及风形成。在极端情况下,这些事件可能导致严重的雷暴,甚至龙卷风。对流还可以通过流体中分子的质量运动有效地传输热量,这使得在许多应用中至关重要。对流在塑造天气模式和影响日常生活中起着关键作用,从汽车冷却系统到工业冷却塔,太阳能热水板,地热加热系统,散热器加热器和冷凝器盘绕冰箱的冰箱。认识到对流的机制和示例强调了其在教育和实际情况下的重要性。当热量通过较热的材料与较冷的材料配对的较热材料的上升,因此会发生对流。这种现象涉及质量在流体中的运动,通常导致气象学的向上方向和地质地壳下地壳下方的慢速物质运动。对流在各种日常生活中起着至关重要的作用,包括开水,散热器操作,蒸杯热茶,冰融化,冷冻食物解冻,强迫对流等等。在气象学中,对流与天气条件(例如对流云和斜纹线条)紧密相关。此外,热空气气球依靠加热的空气升起来航行天空。理解对流的定义为探索其在不同研究领域的各种应用和发生的情况提供了坚实的基础。对流在各种自然和人为的过程中起着至关重要的作用。在热气球中,温度差异引起的浮力会随着热空气被困在里面而提升气球。要下降,其中一些热空气被释放,使较冷的空气进入并减少浮力。该原理也称为堆栈效应或烟囱效应,由于室内和室外空气之间的密度差异,空气进出建筑物。在地质学中,对流电流是地球地幔缓慢运动的原因。 内部的热量通过地幔升起,使其在表面冷却。 此过程驱动板块构造,导致火山形成。 重力对流发生时,淡水比盐水浓密,从而使干盐向下扩散到潮湿的土壤中。 海洋循环是对流的另一个例子,在赤道附近的温水向杆子循环,杆子处的冷水向赤道移动。 在恒星中,对流区域在转移能量中起着至关重要的作用。 等离子体加热时,冷却的血浆下降时会产生循环模式。 对流不限于这些例子;可以在各种人类和自然现象中观察到。 既然您对对流有了基本的了解,请考虑通过探索十个现实生活中常见的凝结示例来扩大知识。在地质学中,对流电流是地球地幔缓慢运动的原因。内部的热量通过地幔升起,使其在表面冷却。此过程驱动板块构造,导致火山形成。重力对流发生时,淡水比盐水浓密,从而使干盐向下扩散到潮湿的土壤中。海洋循环是对流的另一个例子,在赤道附近的温水向杆子循环,杆子处的冷水向赤道移动。在恒星中,对流区域在转移能量中起着至关重要的作用。等离子体加热时,冷却的血浆下降时会产生循环模式。对流不限于这些例子;可以在各种人类和自然现象中观察到。既然您对对流有了基本的了解,请考虑通过探索十个现实生活中常见的凝结示例来扩大知识。
单元2:对流传热热通量,流体流的平均温度,总体传热系数,LMTD,个体传热系数,个体和整体传热系数之间的关系,通过对流和强制对流的传热概念,自然和强制对流的应用,对流的应用,对流,热交换,热交换,单个通行率,1-1-1-1-1-1-1-1-1-1-1-1-1-1次平行式交换1-1-1-1-1-1-2-2-2凝结。
a 北京大学力学与工程科学系,北京,100871,中国 b 黎巴嫩美国大学机械工程系,Kraytem,贝鲁特,1102-2801,黎巴嫩 c 里法国际大学数学与统计学系,I-14,伊斯兰堡,44000,巴基斯坦 d 江苏大学流体机械工程与技术研究中心,镇江,212013,中国 e 新乌兹别克斯坦大学化学工程学院,乌兹别克斯坦塔什干 f 塔什干国立尼扎米师范大学科学与创新系,乌兹别克斯坦塔什干本尤德科尔街 27 号 g 山东工商大学计算机科学与技术学院,烟台,264005,中国 h 诺拉·宾特·阿卜杜勒拉赫曼公主大学科学学院物理系,邮政信箱84428,利雅得,11671,沙特阿拉伯 i 维贾扬加拉斯里克里斯纳德瓦拉亚大学数学系,巴拉里,卡纳塔克邦,印度 j 罗伯特戈登大学工程学院,阿伯丁,AB10 7GJ,英国