抽象的湍流参数将仍然是公里尺度地球系统模型中必要的构建块。在对流边界层中,其中保守特性(例如潜在温度和水分)的平均垂直梯度大约为零,标准的ANSATZ将湍流通量与涡流扩散率的平均垂直梯度相关联,必须通过质量 - 浮力参数来扩展典型的非元素和降低的质量上流和下向大气边界层。我们提出了基于生成对抗网络的干燥和瞬时增长的对流边界层的参数化。训练和测试数据是从三维高分辨率直接数值模拟获得的。模型结合了自同性恋层生长的物理学,随后是通过重生化的经典混合层理论。这增强了生成机器学习算法的训练数据库,因此显着改善了在地面层上方边界层内部不同高度的合成生成的湍流场的预测统计数据。与随机参数的不同,我们的模型能够预测不同高度的浮力波动,垂直速度和浮力通量的高度非高斯和短暂性统计,从而捕获了最快的热量渗透到稳定的顶部区域。我们的生成算法的结果与标准的双方程质量 - 舒适方案一致。我们的概念证明也为在其他自然流中有效的数据驱动对流参数铺平了道路。目前的参数化还提供了湍流对流的颗粒型水平组织,这在其他模型封闭中均无法获得。
主要关键词