1 德国海德堡大学工程数学与计算实验室 (EMCL)、跨学科科学计算中心 (IWR)、海德堡大学,2 德国海德堡理论研究所 (HITS) 数据挖掘与不确定性量化 (DMQ)、3 澳大利亚国立大学物理研究院材料物理系,澳大利亚堪培拉,4 综合生物学中心 (CBI) 动物认知研究中心 (CRCA); CNRS,大学 Paul Sabatier – 图卢兹三世,法国图卢兹,5 麦考瑞大学生物科学系,悉尼,澳大利亚,6 蒙彼利埃进化科学研究所,CC64,蒙彼利埃大学,蒙彼利埃,法国,7 生物校园,蒙彼利埃资源影像中心,法国国家科学研究中心,INSERM,蒙彼利埃大学,蒙彼利埃,法国,8海德堡大学计算中心 (URZ),德国海德堡
量子频率梳子是对并行量子通信和处理的有用资源,因为自由度的稳健性和易于处理。在这项工作中,我们提出了一种基于纯无源光学组件(例如腔和光学延迟线路),生成宽带双音频梳子并控制其在粒子交换下的对称性的方法。我们使用集成的藻类半导体平台实验表明我们的方法,该平台产生了量子频率梳子,在室温下工作并遵守电气注射。我们显示了两光子频率梳的产生和操纵,并在500个峰上散布。这些结果为开发用于复杂量子操作的大规模平行和可重新发现系统的开发开辟了有趣的观点。
尽管联芳骨架在天然化合物和药用化合物 1 中非常普遍,但包含糖部分的结构仍然很少。作为天然存在的物质,一些糖功能化的联芳分子(图 1)已从海棠 2 、火棘( 1 ) 3 繁缕( 2 ) 4 和珍珠菜 5 中分离出来,这些植物的茎、树皮、果实和根一直被用于传统中药。化合物 3a,b 存在于云芝 6 和厚朴 7 中,而它们的合成同源物 3c 则被证明 8 是一种很有前途的分子,可用于开发一类新型抗抑郁药物。鞣花单宁是天然多酚,属于可水解单宁类,具有一个或多个六羟基联芳单元,围绕着一个中心葡萄糖核心。 9 其中,1951 年从马豆中分离出来的 corilagin 4 表现出了较强的抗肿瘤活性。10 1995 年,11 对一系列 ( -D-甘露吡喃糖基)联苯底物 5 抑制 E-、P- 和 L- 选择素-IgG 融合蛋白与 HL60 细胞表面表达的 sLex 结合的能力进行了测定。糖功能化联芳分子生物活性的多样性使得它们的硫代类似物成为设计新型生物活性联苯糖苷的主要候选物。事实上,硫糖可以用作糖模拟物,对化学和酶降解都更加稳定。在此背景下,我们最近报道了两种通过
2 = 1)Qubit违反了这些对称性。可以将其表示为(α|0⟩+β|1⟩)的选择,这是一个特权参考框架(例如大爆炸的可以通过16个数字(位置为4个,速度为4,加速度为4个)独立于时间,但在时空连续体中,对于其余的观察者质量是必需的。 相同的17个数字描述如此详尽地描述的特权参考框架,分别分别违反了标准模型的所有三个对称性或一般量子的“记录”,可以表示为17个基本波函数(或在自然和转移的自然(offertical ofdinal)数字之后,可以用自然(或转移)数字来识别Hillbert Arithmbert Arithmbert Arithmbert Arithmbert Arithmbert Arithmbert Arithmbert Arithmbert Arithermbert Ariith的函数(或类别)标准模型。 引入了对一般相对性相关概念的两个概括:(1)所有任意加速参考框架的类别的“离散参考框架”,构成平滑的歧管; (2)相对性的相对性的更一般原则,以及对所有离散参考框架的量子信息的保守性,涉及所有常规相对性的所有参考框架的平滑歧视。 然后,可以通过更一般的相对性原理作为特权参考框架的等效重新说明来解释从加速参考帧到标准模型的17个基本波函数的徒跃迁:平滑为离散。可以通过16个数字(位置为4个,速度为4,加速度为4个)独立于时间,但在时空连续体中,对于其余的观察者质量是必需的。相同的17个数字描述如此详尽地描述的特权参考框架,分别分别违反了标准模型的所有三个对称性或一般量子的“记录”,可以表示为17个基本波函数(或在自然和转移的自然(offertical ofdinal)数字之后,可以用自然(或转移)数字来识别Hillbert Arithmbert Arithmbert Arithmbert Arithmbert Arithmbert Arithmbert Arithmbert Arithmbert Arithermbert Ariith的函数(或类别)标准模型。引入了对一般相对性相关概念的两个概括:(1)所有任意加速参考框架的类别的“离散参考框架”,构成平滑的歧管; (2)相对性的相对性的更一般原则,以及对所有离散参考框架的量子信息的保守性,涉及所有常规相对性的所有参考框架的平滑歧视。然后,可以通过更一般的相对性原理作为特权参考框架的等效重新说明来解释从加速参考帧到标准模型的17个基本波函数的徒跃迁:平滑为离散。与参考框架概念概念相关的量子信息的保守性可以解释为恢复以太的概念,以太的概念,一种绝对不可移动的媒介和牛顿力学中的参考框架,可以将相对运动解释为绝对的运动或逻辑上:逻辑上:关系:关系。新的以太将由量子位(或量子信息)组成。可以通过特殊相对论通过量子力学与量子信息理论(或“量子力学和信息”)通过特殊相对论来跟踪“以太”的概念途径。纠缠和重力的识别也可以被视为“副产品”所隐含的,这是从平滑的“特殊和一般相对性”到量子力学和信息的“平坦”以太的过渡。量子醚一般都超出了“时间屏幕”,并将其描绘成黑暗和可见的物质和能量。
本文探讨了商业智能(BI)如何使用AI和相互对称原则来从数据中获得可行的见解。目标是研究AI和相互对称性,在BI中使用以及它们对战略决策的影响之间的协同作用。使用了对AI,相互对称性,BI文献,研究文章和案例研究的完整综述。二级数据源进行汇总和评估,以解释这种综合方法的基本概念和方法。重大发现表明,互惠对称引导的AI驱动分析如何改善数据解释和洞察力产生。这种整合增强了决策,创新和行业运营。政策应解决道德问题,数据隐私问题和法律框架,以促进负责的AI采用和数据驱动的决策透明度。BI可以通过AI和相互对称性进行转换,以打开新的机会并获得竞争优势。这种综合方法强调了不断的创新和适应性,以最大程度地提高战略业务成功的数据潜力。
HAL 是一个多学科开放存取档案库,用于存放和传播科学研究文献,无论这些文献是否已出版。这些文献可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
硼-二吡咯亚甲基 (BODIPY) 染料由于易于合成、模块化、可调的光物理和电化学性质、稳定性以及对可见光的强吸收而被广泛应用于光驱动过程。 [1] 根据 BODIPY 核心结构的取代模式,单线态和三线态激发态可以在光子吸收时优先填充,从而产生不同的应用。例如,BODIPY 的荧光特性已在生命科学中被用于生物传感应用或成像活动。 [2] 获取 BODIPY 染料的长寿命三线态可应用于光动力疗法、通过三线态-三线态湮没的光子上转换或光催化。 [3] 将重原子(即 Br、I、Au、Pt、Ru)共价连接到 BODIPY 核心结构是一种常用方法,通过自旋轨道耦合 (SOC) 诱导的系统间窜改来促进三线态的布居。 [4] 过去十年来,这些含重原子染料在光氧化还原催化和能量转移过程中的应用在文献中蓬勃发展。[5] 例如,含卤素的 BODIPY 催化剂已用于光氧化还原有机反应,如 N 取代四氢异喹啉的功能化、[6] 呋喃的芳基化和
我们检查了Bogoliubov-de Gennes Hamiltonian及其对称性对称性,用于分时交换对称性破碎的三维Weyl超导体。在消失的配对电位的极限中,我们指定该哈密顿量在两组持续对称性下是不变的,即u(1)量规对称性和u(1)轴向对称性。尽管Bardeen-Cooper-Schrie Q er类型的配对会自发打破这两个对称性,但我们表明,Fulde-Ferrell-Larkin-ovchinnikov型配对的fulde-ferrell-ferrell-ferrell-larkin-ovchinnikov型配对会自发地破坏u(1)的对称性(然后通过众所周知的超级量表模式恢复了超级质量验证模式)。因此,在前一种情况下,系统中需要两种NAMBU-GOLDSTONE模式来恢复损坏的对称性。我们表明这两种模式之一是出现的伪标量相模式。我们还证明了这种相位模式会导致伪 - 甲壳虫效应。
生物催化剂因其精致的立体化学而受到倡导,但是测量对映体多余的色谱分离速度缓慢,可以瓶颈它们的发展。为了克服这一限制,我们生成对映选择性转录因子(ETF),将对映异构体特异性分析物浓度转换为可编程基因表达输出。使用大量平行的报告基因测定法,我们测量了300,000多个转录因子变体的剂量反应曲线,以响应对映体中间体和药物溶性溶性的术前体。利用这个全面的数据集,我们定量比较由随机,位点饱和和shu thu诱变产生的变体的灵敏度,选择性和动态范围,从而使ETF分离具有特殊的特异性特异性。高分辨率结构进一步阐明了四个动物如何实现对映选择性和电荷相互作用,使亚胺反应产物与亚胺前体不同。最后,我们使用两个ETF来创建高通量手性屏幕,我们将其与荧光激活的细胞排序配对,以倒置的对映选择性发展亚胺还原酶。此方法为不对称反应筛选提供了一种快速且可扩展的方法,从而促进了药物制造的生物催化剂设计的进步。