心血管疾病 (CVD) 的患病率正在迅速上升,预计到 2030 年,每年将有超过 2360 万人死于 CVD,到 2035 年,美国大约一半的成年人口将患有某种形式的 CVD。仅在美国,每年仅 CVD 的管理和治疗费用就超过 3500 亿美元,其中大部分支出用于缺血性心脏病和高血压健康服务。全球 CVD 负担日益加重,凸显了加强和持续全球预防工作以及大规模药物发现方法的必要性,这些方法可以充分满足临床未满足的需求。细胞骨架组,我们将其定义为完整的细胞骨架蛋白组,例如细丝和微管,以及其他相关材料,包括支持其结构的底层细胞外基质 (ECM),为 CVD 药物靶标发现提供了相对较新且尚未得到充分探索的途径。
摘要。背景/目的:临床上,一些癌症患者在接受几个疗程的化疗后会产生耐药性,甚至完全没有治疗反应。在给药前预测治疗反应对肿瘤学家来说很有价值。本研究旨在评估对从晚期肝细胞癌 (HCC) 患者中分离的循环肿瘤细胞 (CTC) 进行药物敏感性测试的可行性。材料和方法:使用体外培养对接受细胞毒性化疗或索拉非尼的患者分离的 CTC 进行药物测试。31 名晚期 HCC 患者和 1 名良性病变患者参加了这项研究。结果:体外用化疗药物孵育后,10/12 (83.3%) 未接受治疗的患者 (计划接受第一疗程化疗) 的 CTC 数量减少,但所有接受过化疗的患者 (6/6) 的 CTC 数量增加 (p=0.002)。 CTC 计数与患者总生存率呈负相关(p=0.016)。接受靶向治疗的患者(n=11)的 CTC 与索拉非尼一起孵育,以检测敏感性
伪尿苷 ( Ψ ) 是哺乳动物非编码 RNA (ncRNA)(包括 rRNA、tRNA 和 snRNA)中最常见的非规范核糖核苷,占总尿苷水平的 ∼ 7%。然而,Ψ 仅占 mRNA 上尿苷的 ∼ 0.1%,其对 mRNA 功能的影响仍不清楚。研究表明,Ψ 残基会抑制宿主先天免疫因子对外源 RNA 转录物的检测,因此病毒可能通过破坏宿主伪尿苷合酶 (PUS) 将 Ψ 残基添加到 mRNA 中来抑制受感染细胞的抗病毒反应。在这里,我们描述并验证了一种新型的基于抗体的 Ψ 映射技术,即光交联辅助 Ψ 测序 (PA- Ψ -seq),并用它来映射不仅在多个细胞 RNA 上而且在 HIV-1 编码的 mRNA 和基因组 RNA 上的 Ψ 残基。我们描述了 293T 衍生细胞系,其中先前报道的人类 PUS 酶会将 Ψ 残基添加到人类 mRNA 中,特别是 PUS1、PUS7 和 TRUB1/PUS4,通过基因编辑被灭活。令人惊讶的是,虽然这使我们能够将细胞 mRNA 上的几个 Ψ 添加位点分配给这三种 PUS 酶中的每一种,但 HIV-1 转录本上的 Ψ 位点仍然不受影响。此外,PUS1、PUS7 或 TRUB1 功能的丧失并没有显著降低在人类总 mRNA 上检测到的 Ψ 残基水平(低于野生型细胞中的约 0.1% 水平),因此意味着将大量 Ψ 残基添加到人类 mRNA 中的 PUS 酶仍有待确定。
抗生素耐药性是全球健康的迫切威胁,耐多药病原体正变得越来越普遍。细菌 SOS 通路在感染期间发生 DNA 损伤时发挥作用,启动多种促生存和抗药性机制,如 DNA 修复和超突变。这使得 SOS 通路成分成为可能对抗耐药病原体并减少耐药性出现的潜在靶点。本综述讨论了 SOS 通路的机制、潜在靶点 AddAB、RecBCD、RecA 和 LexA 的结构和功能,以及开发这些蛋白质的选择性小分子抑制剂的努力。这些抑制剂可以作为靶点验证的宝贵工具,并为急需的新型抗菌疗法奠定基础。
我们使用基于培养物和16S rRNA基因基因培养的非依赖性技术(总DNA的pycecing)从其成分(MEJU和太阳盐)中确定细菌迁移到Doenjang。焦磷酸测序结果表明,Meju但没有太阳盐的细菌群落显着影响Doenjang社区的细菌群落。基于培养的焦磷酸测序分析产生了相似的结果。这些结果表明,doenjang中的大多数主要细菌物种是从Meju而不是太阳盐迁移的。因此,我们认为本研究是使用依赖培养和独立的方法的发酵大豆的细菌沟通最全面的比较之一。更重要的是,细菌16S rRNA的V3和V4区域的焦磷酸测序没有区分阿米洛基法西氏芽孢杆菌,b。siamensis,b。velezensis以及粪肠球菌和E之间。Hirae。Hirae。
单细胞RNA-Sequencing(Scrnaseq)技术正在迅速发展。尽管在标准的scrnaseq概述中非常有用,但是丢失了原始组织中细胞的空间组织。相反,旨在维持细胞定位的空间RNA-seq技术的吞吐量和基因覆盖率有限。将SCRNASEQ映射到具有空间信息的基因上,在提供空间位置时会增加覆盖范围。但是,执行此类映射的方法尚未标记。为了填补这一差距,我们组织了梦想的单细胞转录组学挑战,重点是从scrnaseq数据中从果蝇胚胎中的细胞进行空间重新构造,利用了银标准,并带有银色标准基因,具有原位杂交数据,来自伯克利果蝇转录网络项目的原位杂交数据。34个参与的团队使用了不同的算法选择进行基因选择和位置预测,同时能够正确定位细胞的簇。选择预测基因对于此任务至关重要。预测基因的表达熵相对较高,空间聚类较高,并包括显着的发育基因,例如间隙和成对基因和组织标记。将前10种方法应用于斑马鱼胚胎数据集,产生了相似的性能和
药理学行业正在不断生产大量新型抗生素。同时,在过去几十年中,对药物的耐药性升高(Nascimento等,2000)。基因交换可能通过不同的机制(例如换位)发生在细菌中,当抗性基因与编码基因的酶是gird时发生的那样(Stockert和Mahfouz,2012)。公共卫生在世界范围内受到微生物对抗生素的抗药性的威胁,因为它降低了药物效应,并随后增加了发病率,死亡率和治疗成本(Abd El-Kalek和Mohamed,2012年)。为了克服这一障碍,许多研究表明了植物提供抑制细菌种类的有效方法。例如,对细菌菌株进行了测试,对细菌菌株进行了测试, ,对金黄色葡萄球菌和铜绿假单胞菌进行了高抑制作用(Al-Zahrani等,2016; Mohammed等,2016)。 此外,torilis Anthriscus提取物的抗细菌特性的重要性是对静脉注射的Podagraria,Pseudomonas glycinea,Heracleum sphondyilium,daucus carota,对金黄色葡萄球菌和铜绿假单胞菌进行了高抑制作用(Al-Zahrani等,2016; Mohammed等,2016)。 此外,torilis Anthriscus提取物的抗细菌特性的重要性是对静脉注射的Podagraria,Pseudomonas glycinea,Heracleum sphondyilium,daucus carota,对金黄色葡萄球菌和铜绿假单胞菌进行了高抑制作用(Al-Zahrani等,2016; Mohammed等,2016)。此外,torilis Anthriscus提取物的抗细菌特性的重要性是对静脉注射的Podagraria,Pseudomonas glycinea,Heracleum sphondyilium,daucus carota
巴斯马蒂大米因其风味、香气和长粒而闻名于世。全球对它的需求不断增加,尤其是在亚洲。然而,其生产受到田间各种问题的威胁,导致农作物严重损失。其中一个主要问题是水稻白叶枯病菌 (Xoo) 引起的细菌性枯萎病。Xoo 通过激活易感基因(OsSWEET 家族基因)来劫持宿主机制,利用其内源性转录激活因子样效应物 (TALE)。TALE 在 OsSWEET 基因的启动子区具有效应物结合元件 (EBE)。在 Clade III SWEET 基因中发现的六个著名 TALE 中,有四个存在于 OsSWEET14 基因的启动子区。因此,针对 OsSWEET14 的启动子对于产生广谱抗性非常重要。为了设计出对细菌性枯萎病的抗性,我们通过靶向 OsSWEET14 启动子中存在的 4 个 EBE,在超级巴斯马蒂大米中建立了 CRISPR-Cas9 介导的基因组编辑。我们能够获得四个不同的超级巴斯马蒂品系(SB-E1、SB-E2、SB-E3 和 SB-E4),这些品系具有三个 TALE(AvrXa7、PthXo3 和 TalF)的 EBE。然后通过选择一种带有 AvrXa7 的当地分离的毒性 Xoo 菌株并感染超级巴斯马蒂,对编辑品系进行三次重复的抗细菌性枯萎病评估。AvrXa7 EBE 缺失的品系对 Xoo 菌株表现出抗性。因此,证实了编辑的 EBE 具有对 Xoo 菌株中存在的各自 TALE 的抗性。在这项研究中,获得了高达 9% 的编辑效率。我们的研究结果表明,可以利用 CRISPR-Cas9 来使本土品种对细菌性枯萎病产生抗性,以抵抗当地流行的 Xoo 菌株。
。CC-BY-NC-ND 4.0 国际许可,根据 提供(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者,此版本于 2020 年 5 月 21 日发布。;https://doi.org/10.1101/2020.05.20.103614 doi:bioRxiv 预印本
Geotn Ecoli Mabs Msmeg Mav Mmar Mbovis Mtb Geotn 100 - - - - - - - Ecoli 29 100 - - - - - - Mabs 29 37 100 - - - - - Msmeg 29 36 74 100 - - - - Mav 28 36 - 747 - 703 - Mmar 77 80 100 - - Mbovis 28 35 73 79 80 84 100 - Mtb 28 35 73 79 80 84 100 100 Geotn – G. thermodenitrificans;大肠杆菌——大肠杆菌; Mabs——脓肿分枝杆菌; Msmeg – M. smegmatis;小牛 – 219
