摘要:最近,在极端静水压力(> 14 GPA)下,在LA 3 Ni 2 O 7中发现了具有TC≈80K的超导性。对于实际应用,我们需要在环境压力下稳定这种状态。提出,这可以通过用BA代替LA来实现。为了将该假设放在测试中,我们使用了最先进的原子层逐层分子束外疗(All-MBE)技术来合成(LA 1-X BA X)3 Ni 2 O 7膜,不同的X和LA(Lanthanum)和Ba(LaThanum)和Ba(Baium)的分布。令人遗憾的是,我们探索的所有构图都无法稳定。靶向化合物立即分解为其他相的混合物。因此,在环境压力下镍镍中高温超导性的这一途径似乎并不希望。
本文深入研究了RV32IMAC RISC-V System-Chip(SOC)的ASIC实施,重点介绍了其对各种监视应用的适应性。通过利用RISC-V架构的功能,SOC旨在为各种环境(包括工业部门,战区和放射性领域)提供灵活,高效的平台。通过细致的建筑设计和优化策略,Soc在绩效,功率效率和成本效益之间取得了平衡。值得注意的是,它集成了针对监视操作的专门说明,以及对传感器集成和实时数据处理的强大支持。此外,SOC的实施利用高级技术来确保与新兴监视系统的可靠性,可扩展性和兼容性。具有自主处理复杂任务并通过基于IoT的服务来促进无缝沟通的能力,RV32IMAC RISC-V SOC的ASIC实施代表了监视技术领域的重大进步,有望增强情境意识和威胁能力。
在发现之后的几十年中,科学家发现了在较高温度下变得超导的材料。然而,直到1986年发现的所有超导体的过渡温度都非常低,从而使它们依赖于液态氦气的冷却系统。在1980年代,两位研究人员进入了该领域,并彻底改变了超导性的研究:K。AlexMüller和J. Georg Bednorz,他们当时在苏黎世附近的鲁斯利基(Rüschlikon)的IBM研究实验室工作,苏黎世附近的陶瓷材料,涉及Perovskites,涉及Perovskites,重点介绍其化学物质,以后的型号,并在Felroctric上进行了延误,并以后进行了典型的运输。在1983年初,苏黎世大学教授K.AlexMüller对超导体感兴趣,并开始研究氧化陶瓷。突破是在1986年发现了高温超导体(HTS)的,两名科学家于1987年后的两名科学家获得了诺贝尔物理学奖。在接下来的几年中,发现了更多其他超导陶瓷,其过渡温度低于氮气变为液体的温度(-196º),从而避免了使用氦气冷却的问题。这些新材料的技术应用仍然受到限制,因为陶瓷通常很脆弱。观看有关高温超导性突破性发现的视频。
la 2 O 3 + 15b→2lab 6 + 3bo↑(S1)将少量的硼(3 wt%)引入初始电荷中,以补偿由于合成温度下蒸气的高压而导致的硼可能损失。将电荷机械混合几天,至少在筛子中筛分至少5次,以便基于氧化物和硼打破砾岩,并尽可能地制备均匀的混合物。将准备好的混合物压入片剂中,直径为15毫米,高度为10毫米,在1650 0 C的温度下将其保持在真空炉中一个小时C,以约30度/分钟的速度缓慢升高,以确保去除所得气体。The equation (S1) reflects the overall reaction (initial (left side) and final (right side) stages), but the reduction reaction itself goes through intermediate stages that include the formation of borate (LaBO 3 ), a trace amount of hexaboride (LaB 6 ) and free boron (B free ) (~1055 0 C) and the subsequent reaction of the LaBO 3 with the remaining boron to form a hexa boride (1175 0 c)[1]
我们研究了Bloch状态的量子几何形状的影响,该量子通过带状分辨的量子量张量,对三维Pyrochlore- Hubbard模型中的库珀配对和频段超导性的影响。首先,我们准确分析了低洼的两体频谱,并表明配对顺序参数在此四波段晶格中是均匀的。这使我们能够建立多播超导体的超级流体重量之间的直接关系,(i)在零温度下最低的两体分支的有效质量((ii)Ginzburg-landau的动力学系数在关键温度和(iii)veLocity and Zeratonkonkonkonkonkotnonkonkonkonkonkonkonkonkonegondonkonkonkonegondonkonkonegondonkondonkonegondonkondonektone and Zery the Zeratonkonkonekonegine the Zery the godkonkondone the Zery the goftonkondone the Zery the godkonkondone the ZeryaTinkonkondonkon。此外,我们对超级流体重量和戈德石模式进行了重复的数值分析,探索它们在零温度下的常规和几何成分。
魔术角扭曲的双层石墨烯(MATBG)在理论上和体验上都广泛探讨了一个合适的平台,可用于包括铁磁剂,电荷顺序,破碎的对称性和非常规的超导性的富相图。在本文中,我们研究了MATBG中远程电子相互作用,自旋爆发和超导性之间的复杂相互作用。通过为MATBG采用低能模型,该模型捕获了频带的正确形状,我们探索了短期和长距离相互作用对自旋闪光的影响及其对MATRIX随机相位的超导(SC)成对角度的影响(Matrix RPA)。我们发现,SC状态特别受到远程库仑相互作用的强度影响。有趣的是,我们的矩阵RPA计算表明,与现场相比,系统可以通过增加远距离相互作用的相对强度来从磁相转移到SC相。这些发现强调了电子 - 电子相互作用在塑造MATBG的有趣特性中的相关性,并提供了设计和控制其SC相的途径。
二维半导体 - 螺旋体异质结构构成了许多纳米级物理系统的基础。但是,测量此类异质结构的性质并表征半导体原位是具有挑战性的。[1]最近的一项实验研究能够使用超流体密度的微波测量值探测杂质内的半导体。这项工作表明,由平面磁场引起的半导体中超流体密度的迅速耗竭,在存在自旋轨道耦合的情况下,这会产生所谓的Bogoliubov Fermi Sur- sus。实验工作使用了一个简化的理论模型,该模型忽略了半导体中非磁性疾病的存在,因此仅在定性上描述数据。是由实验激励的,我们引入了一个理论模型,该模型描述了一个具有强旋转轨道耦合的无序半导体,该模型由超级导体邻近。我们的模型为状态密度和超流体密度提供了特定的预测。存在疾病的存在导致无间隙超导阶段的出现,这可能被视为Bogoliubov Fermi表面的表现。应用于真实的实验数据时,我们的模型显示出了出色的定量一致性,并在考虑到磁场的轨道贡献后,提取了材料参数(如平均自由路径和迁移率),以及e ef the g-tensor。我们的模型可用于探测其他超导体 - 症状导体异质结构的原位参数,并可以进一步扩展以访问运输特性。
与费米尼类似物相比,当对角二二骨汉密顿人的对角线形式[3]时,会出现其他复杂性,这是由于必须小心保留玻色子通勤关系的事实而引起的。这特别意味着不能通过标准的统一转换对对角线进行对角线,而是通过满足t -1 p =ττz t†pτz的统一矩阵,而τz则是Nambu空间中的第三个Pauli矩阵。在参考文献中详细描述了对角度化此类汉密尔顿人的一般程序。[3]。简而言之,该过程如下:(1)在h sp = k†p k p的形式上写入Hamiltonian H SP,其中k p是遗传学上的上对角线矩阵。从数值上讲,可以通过cholesky的分解来实现此步骤。(2)通过某种标准数值方法对角线化Hermitian矩阵kPτz k†p。(3)在矢量e p =(ϵ lp,ϵ l -1,p,。。。,ϵ1 p,−ϵ1 p, - ϵ2 p,。。。, - ϵ lp),并将相应的2 L特征向量w ip存储为矩阵w p的列。(4)构造对角线矩阵D P = P
超导冷凝物:基本思想是将超导体视为量子系统,其中样品中的所有电子都可以通过同一波函数描述,这与仅一个电子的波函数类似。这种行为称为相干行为。(一个更熟悉的示例是激光,在这种情况下,激光发出的所有光子均以相同的波函数为单位,具有相同的频率,相同的波长和相同的阶段。)为了使设备成为超导,其所有电子的宏观分数就足够了。例如,在较高的温度下,参与超导冷凝水波函数的电子的比例降低,实际上在t = tc时为零。