由于其导热系数如此之高(30 W mK 1 ),因此来源广泛、价格低廉并且适合于批量填充。它应用于目前商业化的TIM(例如导热垫片和导热凝胶)以提高导热系数。然而,传统的热固性Al 2 O 3 /PDMS复合材料在使用过程中容易受损出现裂纹,损坏后材料的导热系数或其他功能会降低。自修复的概念来自于自然生物的愈合过程。材料在自我修复之后可以保持其性能。如果这些TIM具有自修复能力,可以自动修复其受到的损伤,将有助于长期使用以及增强可靠性和耐用性。材料固有的自修复能力主要通过动态可逆键实现,例如二硫键、20,21 Diels-Alder 反应、22,23
由于其导热系数如此之高(30 W mK 1 ),因此来源广泛、价格低廉并且适合于批量填充。它应用于目前商业化的TIM(例如导热垫片和导热凝胶)以提高导热系数。然而,传统的热固性Al 2 O 3 /PDMS复合材料在使用过程中容易受损出现裂纹,损坏后材料的导热系数或其他功能会降低。自修复的概念来自于自然生物的愈合过程。材料在自我修复之后可以保持其性能。如果这些TIM具有自修复能力,可以自动修复其受到的损伤,将有助于长期使用以及增强可靠性和耐用性。材料固有的自修复能力主要通过动态可逆键实现,例如二硫键、20,21 Diels-Alder 反应、22,23
AIG 已收到多起因热导热油泄漏并遇到点火源而引发火灾的索赔。导热油在高温高压下运行。如果发生泄漏,则可能以汽化喷雾的形式出现。在这种情况下,导热油可能高于其闪点,如果附近有点火源(请注意,这可能是非常热的表面),则很容易点燃。在某些情况下,如果在找到点火源之前积累了足够的蒸汽,汽化油可能会爆炸。导热油具有高能量密度,一旦点燃,就会燃烧得非常猛烈。因此,灭火行动可能具有挑战性,只有在消除泄漏源(或导热油被火完全消耗)后才有可能灭火。热油还可能点燃附近的植被,使其进一步蔓延,甚至在适当的条件下(即植物附近有大量干燥植被覆盖)引发野火。
镁(以下称“Mg”)合金的比重为1.8以下,仅为轻量化材料铝(以下称“Al”)的三分之二。最近,在薄型笔记本电脑机身中,Mg合金的轻量化价值得到了认可。住友电气工业株式会社镁合金开发部将独有的急速凝固技术*1应用于通用的AZ91D Mg合金*2,制造出具有轻量化、高强度、高耐腐蚀性特点的AZ91板材,并致力于将其实际应用于薄型笔记本电脑机身。最近,受新型冠状病毒感染的肺炎疫情影响,社会环境发生了重大变化,个人和社会规范发生重大转变,包括个人交流和企业运营在内的所有社会活动都正在向数字化和线上化转变。为了普及推动数字化的IoT、AI技术以及加速其应用的第五代移动通信系统(以下简称“5G”),必须完善基础设施。人们期待包括个人和产业在内的社会能够利用这些技术创造新价值、实现社会创新。(1)实现社会创新的一大障碍是基础设施建设时电子设备的发热量。(2)作为重要电子设备和零部件的CPU所使用的半导体集成度不断提高,发热量集中化。预计随着IoT和5G的应用,功耗会增加,局部发热量也会增大。(2)近年来,薄型笔记本电脑、智能手机等电子设备机身的体积和尺寸不断缩小。受这些因素影响,预计发热量将超过电子设备的允许工作范围。电子设备的冷却技术将变得比以往任何时候都更加重要。 (2)减少
摘要。近年来,相变材料(PCM)越来越受到不同热量存储和管理领域的关注。在建筑部门中,将其作为相变材料(PPCM)作为建筑包膜中的有效PCM引入,这表现出了显着的结果。然而,PPCM的导热率较差仍然是实验和数值研究中的最高缺点。在本文中,对paraffin的一般评估,它们的常见用途和应用,特别着眼于它们在构建信封应用中的潜力。此外,突出显示和评估了PPCM的一般和期望的特性。提出和讨论了较差的热导率PPCM的主要实际限制及其对PPCM性能的影响。相应地,用于提高较差的热导率的流行技术将分为四类:纳米颗粒的分散,扩展的石墨,金属泡沫和扩展表面技术(FINS)。总的来说,经过分析的研究工作表明,基于PPCM的建筑物包膜应用可以显着改善建筑物的热性能,从而减少热负载,节能和热舒适性。此外,采用增强技术对于改善PPCM在构建更好利用的应用中的热性能至关重要。本综述为新移民和感兴趣的方提供了有关PPCM在建筑领域的主要应用方面的明确愿景,以进一步调查技术商业化。
近年来随着研究的深入,高导热复合材料多是通过构建三维网络结构来获得的。14,36制备三维CF骨架的常用方法有简单的共混法、37,38化学气相沉积法(CVD)、39电泳沉积法、40,41静电锁定法42-44和冷冻干燥取向法45,46然而在共混工艺和CVD作用下,CF细丝通常随机、无序地分布在前驱体基体中。具有无取向CF结构的复合材料不易实现连续的热传输路径。为了构建连续的导热网络结构,提高CF的取向度已被证明是一种有效的手段。13众所周知
Ho, T. Y. K.、Ankit、Febriansyah、B.、Yantara、N.、Pethe、S.、Accoto、D.、Pullarkat、S. A. 和 Mathews、N. (2021)。通过离子液体掺入诱导聚氨酯丙烯酸酯体系中的热可逆光学跃迁,用于可拉伸智能设备。《材料化学杂志 A》,9(23),13615-13624。https://dx.doi.org/10.1039/D1TA02635F
TIMbber TM 基于 ARIECA 团队开发的专有液态金属嵌入弹性体 (LMEE) 技术。它为聚合物基热界面材料 (PTIM) 设定了新的性能水平。通过悬浮在软弹性体封装材料中的液态金属液滴的独特组合,液态金属的全部潜力可用于大批量制造 TIM 应用。LMEE 中液态金属液滴的极端变形性导致对硅和镍的热接触阻非常低,伸长率极高,超过原始粘合线厚度 (BLT) 的 200%,并且在固化条件下具有低于 0.2% 的出色空洞性能。通过优化基础聚合物,实现了对硅和镍的出色粘附性。
进行了一种非平衡分子动力学模拟方法,以研究具有不同类型缺陷的硅纳米线(SINW)的热导率(TC)。分析了缺陷位置,孔隙率,温度和长度对SINW TC的影响。数值结果表明,表面缺陷的SINW比具有内部缺陷的SINW的SINW高,随着孔隙度和温度的升高,SINW的TC逐渐降低,并且温度对具有缺陷的SINW的影响较弱,远小于对SINWS的影响。SINW的TC随着长度的增加而增加。sinw具有最高的状态声子密度低频峰的相应频率;但是,当SINW具有内部缺陷时,观察到最低的频率。在相同的孔隙率下,SINW与表面缺陷的平均声子参与高于内部缺陷的SINW。
通过每年一次的征集,最多将选出七位企业家,他们将在美国能源部先进制造办公室和田纳西河谷管理局的财政支持下,将他们的想法转化为能源、先进制造和综合电网公司。创新者将获得奖学金,包括长达两年的个人生活津贴、福利和旅行津贴,以及用于 ORNL 合作研究和开发的大量资金。