蓝莓非常腐烂,真菌和细菌在所有供应链中都会影响它们的变质。目前尚无研究的姜黄素加载纳米泡(NBS)或姜黄素纳米晶体(NCS)的应用来保持其新鲜度。这项初步工作的目的是根据体外对蓝莓细菌微生物群的蛋白质效应来评估这两种纳米形象,并在培养皿中建立快速解答方案。在三种不同的光条件下(暗环境,蓝色LED和白色LED)测试了效果。的结果表明,在微生物与NBS接触和NCS接触后,照明步骤(蓝色LED或白色LED)的存在对于激活纳米结构并获得抑制halo的阳性答案至关重要。值得注意的是,与白色LED相比,蓝光显着增加了抗菌潜力。此外,突出显示了姜黄素浓度 - 依赖性效应(相对于25 µg/ml,50 µg/ml)。应用NC没有显着差异。从这项初步研究中获得的结果指出,从蓝莓微生物群对含姜黄素的NB和NC的细菌的敏感性,应进一步研究以评估纳米技术的体内适用性。
摘要:在许多新兴技术中,电池电动汽车(BEV)已成为对严格排放法规的突出和高度支持的解决方案。尽管受欢迎程度越来越大,但可能会危害其进一步传播的主要挑战是缺乏充电基础设施,电池寿命降级以及实际和有望的全电动驾驶范围之间的差异。本文的主要重点是制定综合能量和热舒适管理(IETM)策略。此策略可最佳地管理供暖,通风和空调(HVAC)单元所需的电能,这是电池负荷上最受影响的辅助设备,以最大程度地减少电池寿命在任何特定的驱动循环中的降解,同时确保实际的机舱温度徘徊在允许的公寓内悬停在参考机舱温度中允许的公寓温度限制内,并且驾驶员的驾驶员启动了驱动器,并始终启动。这项工作结合了健康(SOH)估计模型,高保真舱室热力学模型以及HVAC模型的市售BEV的前向示例模拟模型,以展示提出的增强电池寿命的IETM IETM策略的效果和功效。IETM的瞬时优化问题是通过利用目标函数凸度的黄金搜索方法来解决的。在不同的驾驶场景下进行的模拟结果表明,提议的物品控制器带来的改进可以将电池健康降解最大化高达4.5%,能源消耗量最高2.8%,同时将机舱温度偏差保持在允许的范围内,从而在允许的限制范围内与参考温度保持一致。
•瑞士联邦技术学院教授Johan Auwerx,Lausanne•Gautam Bhardwaj,Pinbox联合创始人; Ashoka研究员•中国太平洋人寿保险保险前首席执行官John Cai•伦敦经济学院长期护理全球观察员校长Adelina Comas-Herrera•Rushika Fernandopulle,IORA Health的联合创始人(一项医疗亚马逊的一部分)•Stephen Frank,Stephen Frank,CEO兼总裁,加拿大人寿和健康保险协会的首席执行官兼总裁; Vice President, Global Federation of Insurance Associations • Martin Fröhlander, President and Chair of the Board of Directors, Junoverse • Scott Gaul, Senior Vice President and Head of Individual Retirement Strategies, Prudential Financial • Dale Hall, Managing Director of Research, Society of Actuaries • Christophe Heck, Market Head L&H France, Swiss Re • Kostas Kalaulis, CEO and Board member, EpiCure Biotechnologies • Sanjeev Kapur, Chief Marketing Officer and Product Head, Asia, MetLife • Alistair McQueen, Head of Wealth and Savings, Aviva • Edward Moncreiffe, CEO, Global Insurance, HSBC • Nils Reich, Group CEO Health, AXA • Andrew Scott, Professor of Economics, London Business School • Daniel Zimmerman, Senior Vice President and Chief Science Officer, RGA
在实践中应用材料时,注意力不可避免地关注他们对使用寿命的抵抗。在必须研究疲劳性抗性时,许多应用都会承受疲劳负荷。这通常需要进行各种实验测试。但是,这种实验是昂贵且耗时的,因此,它也值得开发有能力的模型来模拟资源密集型测试,并开发改进的Maperials及其制造过程Holopainen and Barriere(2018); Bennett和Horike(2018); Barriere等。(2019,2021); Zirak和Tcharkhtchi(2023)。开发先进的,现实的疲劳模型以及抗疲劳材料需要深入了解材料的微机械行为。著名的con-
表观遗传学通过调节基因表达而不改变DNA序列在衰老和寿命中起着至关重要的作用。最近的研究表明,表观遗传修饰,例如DNA甲基化,组蛋白修饰和非编码RNA相互作用,会导致衰老过程,并且可能受到外部因素的影响。生活方式干预措施,包括饮食,体育锻炼,压力管理和睡眠优化,已通过调节表观遗传标记来逆转生物年龄的结果。本文探讨了表观遗传老化的机制,环境和生活方式因素的影响以及利用表观遗传可塑性的策略来实现健康和寿命。了解这些机制为开发有针对性的干预措施促进健康衰老并延长寿命铺平了道路。
“即使我们只关注那些被诊断患有家族性高胆固醇血症并因此可以接受治疗的人,他们平均比其他人群早七年患上心血管疾病,并出现相关症状。更好地检测患者意味着可以尽早开始治疗,防止家族性高胆固醇血症导致心血管疾病。”
“如果我们想在量子计算方面取得进展并创造更具可持续性的电子产品,我们需要更长的激子寿命和不依赖电子电荷的新信息传输方式,”领导这项研究的亚历山德拉·兰扎拉 (Alessandra Lanzara) 表示。兰扎拉是能源部劳伦斯伯克利国家实验室 (Berkeley Lab) 的高级教职科学家和加州大学伯克利分校物理学教授。“在这里,我们利用拓扑材料的特性来制造一种寿命长且对无序性非常强大的激子。”
含摘要黄素单加氧酶(FMO)是一种保守的异种生物酶家族,包括多种寿命干预措施,包括线虫和小鼠模型。以前的工作支持秀丽隐杆线虫FMO-2通过重新布线内源代谢来促进寿命,抗压力和健康状态。但是,有五个秀丽隐杆线虫FMO和五个哺乳动物FMO,尚不清楚促进长寿和健康益处是否是该基因家族的保守作用。在这里,我们报告说,秀丽隐杆线虫FMO-4的表达促进了饮食限制和MTOR抑制下游的寿命延伸和偏花应力抗性。我们发现,仅皮下注射中FMO-4的过表达就足以容纳这些好处,并且该表达显着修饰了转录组。通过分析基因表达的变化,我们发现与钙信号相关的基因被显着改变了FMO-4的下游。强调了钙稳态在该途径中的重要性,FMO-4过表达的动物对Thapsigargin敏感,Thapsigargin是一种ER胁迫,可抑制从细胞质到ER腔的钙通量。这种钙/ FMO-4的相互作用通过数据巩固,表明用小分子或遗传学调节细胞内钙可以改变FMO-4的表达和/或与FMO-4相互作用,以影响寿命和抗压力。进一步的分析支持一条途径,其中FMO-4调节激活转录因子-6(ATF-6)下游的钙稳态(ATF-6),其敲低引起并需要FMO-4表达。一起,我们的数据将FMO-4识别为延长的基因,其作用与已知的寿命途径和钙稳态相互作用。
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权持有人,该版本发布于2024年11月5日。 https://doi.org/10.1101/2023.05.07.539748 doi:Biorxiv Preprint