摘要 — 近年来,室内定位系统 (IPS) 受到了机器人、导航、人机交互等许多研究领域的关注。然而,基于无源射频 (PRF) 技术的 IPS 仍然很少见。本文提出了一种基于接收信号强度 (RSS) 分布和高斯过程回归 (GPR) 的三维 (3D) IPS。传统的基于 RSS 的定位系统具有已知频率的发射器,而在提出的 PRf 机会信号 - 3D IPS (PRO-3DIPS) 中,系统既不部署新的发射器,也不使用任何发射器的先验知识。此外,PRO-3DIPS 集成了多个机会信号 (SoOP) 源、阴影、衰落,还可以捕获场景特征。在 3D 空间中基于 PRF 的 RSS 分布的数据收集和分析实现了 3D 定位功能。应用并比较了三种方法,以找到受场景影响最大的频带,以实现最佳定位性能,并用于估计 RSS 分布。 RSS 分布是通过在场景中测量固定网格上的 PRF 频谱来估计的。利用 RSS 分布,GPR 可以精确定位接收器位置。在实验场景中收集了 90 个网格位置的 RSS,每个位置有 100 个样本。实验结果表明,当
题为“低频电学”,是《手册 77,精密测量和校准——电学和电子学》(1961 年)第一卷的延伸。本作品同样由重印本组成,ab-
对星载射频 (RF) 系统(例如卫星上的 S 波段通信天线)的可靠性问题通常集中在具有复杂电路的组件上。同样重要且最常被忽视的是设备之间的互连。有缺陷的混合耦合器和功率分配器中的故障通常可归因于不稳定的互连。连接器的可靠性对于太空环境中的应用尤其重要,因为太空环境中的温度偏移高达 ± 100°C,因为连接的电气稳定性与其热机械稳定性直接相关。此外,随着系统性能和可测试性目标变得更加严格,连接器与现代高性能系统的所有组件一样,必须满足对更严格公差和规格的日益增长的需求。
• Title: RF Microelectronics • Author: Behazad Razavi • Publication date and edition: Prentice Hall, 2012 Second Edition • ISBN number: ISDN 0-13-713473-8 Course Schedule Prof. Eisenstadt will deliver all the online lectures except for supplemental RF and ADS design lectures and recital lectures by Supervised Teaching Student Chin-Wei Chang.第1周:RF电子设备,现代CMOS MOS晶体管,简单的MOS放大器(Razavi第1章,讲义)第2周:MOS模拟构件和放大器电路(Razavi 2.1,antouts,Dentouts,ankertouts,ankernouts)第3周:基本RF概念,基本的RF Circulity,RF Circultion,Razavi 2.2,Razavi 2.2,4.3周四,RF Circultion,razavi consement,razavi 2.1,anthouts)。 2.3) Week 5: S-parameters, s-parameter examples, Dynamic Range (Razavi, 2.4, 2.6,) Week 6: Sensitivity and Dynamic Range, Analog Modulation, Digital Modulation (Razavi 3.2, 3.3) Week 7: Basic Heterodyne Receivers, Modern Receivers, Exam 1 (Razavi 4.1, 4.2) Week 8: Modern Receivers, Basic RF Filter Analysis, RF Series to Parallel (Basic Matching Networks) (Razavi 4.3, 2.5, handouts) Week 9: LNA Considerations, LNA Topologies, LNA Design CS and CG, ADS Design Project Assigned to Students (Razavi 5.1, 5.2, 5.3)) Week 10: LNA Design CS and CG, Capacitive Transformer, MOS Time Constant Circuits (Razavi 5.3, handouts) Week 11: Passive RF Circuits, RF Spiral Inductors,螺旋感应器计算,考试II(Razavi,7.1,7.2)第12周:RF电感器变量,振荡器基础知识,(Razavi,7.3,7.4,8.1)第13周:振荡器设计,RF振荡器(Razavi,Razavi,8.2,8.2,8.2,8.2,8.2,8.2,8.2,8.2,8.2,8.2,8.2,8.2),振荡器,示波器,示波器,示波器,振荡器,示波器,示波器,示波器,振荡度为被动和主动的示例混音器问题,设计项目(Razavi,6.2,6.3)
I. 引言 近年来,数字射频 (RF) 发射器 (TX) 越来越受欢迎。在数字域中实现发射功能有许多优势,例如,可以省去模拟模块,如可变增益放大器、失调消除数模转换器 (DAC) 和预驱动器。RF 发射器(无论是模拟还是数字)面临的最大挑战是线性度和效率之间的权衡,这反过来又导致了许多线性化技术的出现。由于芯片温度会随 TX 输出功率而有很大变化,因此必须实时继续线性化;也就是说,如果前台校准技术试图校正高度非线性的输出级,则它们会被证明是不够的。本文介绍了一种新的 TX 线性化方法,可在后台校正静态和动态非线性。校正的有效性允许设计 DAC 以实现具有几乎任意积分非线性 (INL) 的最大效率。以宽带码分多址 (WCDMA) 标准为例,简单、紧凑的架构提供了迄今为止报告的最高效率。该发射器采用 28 纳米标准 CMOS 技术实现,可提供 + 24.1 dBm 的功率,相邻信道功率比 (ACPR) 为 − 35.4 dB,总效率为 50%。
碳化硅是量子技术的新兴平台,可提供晶圆级低成本工业制造。该材料还具有高质量缺陷和长相干时间,可用于量子计算和传感应用。利用一组氮空位中心和 XY8- 2 相关光谱方法,我们展示了室温下以 ~900 kHz 为中心的人工交流场的量子传感,光谱分辨率为 10 kHz。通过实施同步读出技术,我们进一步将传感器的频率分辨率扩展到 0.01 kHz。这些结果为碳化硅量子传感器向低成本核磁共振波谱仪迈出了第一步,该波谱仪在医学、化学和生物分析中具有广泛的实际应用。
7. 顶部标记 ................................................................................................................................................ 21
数字射频存储器 (DRFM) 是国防工业广泛使用的一种技术,例如,用于生成虚假雷达目标的电子对抗设备。DRFM 技术的目的是使用高速采样以数字方式存储和重建射频和微波信号。在 Saab Bofors Dynamics AB,该技术用于电子战模拟器 (ELSI) 等。DRFM 技术在安装在 ELSI 电路板上的全定制 ASIC 电路中实现。如今,可编程硬件领域的进步使得在现场可编程门阵列 (FPGA) 中实现 DRFM 设计成为可能。与全定制 ASIC 设计相比,FPGA 技术具有许多优势。因此,本硕士论文的目的是开发一种新的 DRFM 设计,该设计可以在 FPGA 中实现,使用一种名为 VHDL 的硬件描述语言。本硕士论文的方法是首先制定时间计划和需求规范。之后,根据需求规范制定设计规范。这两个规范已成为开发 DRFM 电路的基础。设计要求之一是电路应能够通过外部以太网接口进行通信。因此,部分工作是审查市场上可用的外部以太网模块。结果是一个通过模拟测试的 DRFM 设计。测试表明,设计按照设计规范中的描述工作。
射频 (RF) 传感技术的最新进展可归因于物联网 (IoT)、医疗保健、射频识别和通信应用的发展。射频传感是一个多学科研究领域,需要计算、电子和电磁学方面的专业知识来涵盖所有系统功能,包括协议开发、天线设计、传感器集成、算法制定、互连、数据和分析。这项工作的总体目标是通过一个平台,通过广泛的调查,提供有关射频技术及其创新和应用多样性的详细信息,这些信息来自 CSI 实验室 1 开展的新工作。本研究介绍了最先进的应用和射频传感,包括 W-Fi、雷达、SDR 和基于 RFID 的传感。对每种非接触式技术的优势和局限性进行了全面的调查和研究。此外,还发现了尚未解决的研究空白。数十年的知识和经验已被用于应对新的挑战和需求。本文简要讨论了 RF 系统、物联网、RFID 传感的开发和研究以及研究和部署活动。本文还讨论了与行业、机构研究中心和学术研究相关的新兴研究项目。最后,本文概述了已确定的潜在未来研究领域,强调了机遇和挑战。
图 2 (a) 显示了 V GS =0 V 下三种不同通道结构的能带图。图 2 (b) 显示了通道区域中的导带。垂直切割是在栅极电极中心进行的。如图 2 所示,能带可以通过不同的通道结构进行调制。研究发现,CC 通道和 DC 通道可以有效增加导带。与 SC 结构相比,CC 和 DC 结构的势阱深度分别增加了 0.37 eV 和 0.39 eV。这意味着 CC 和 DC 结构增强了通道区域中电子的限制。此外,DC 通道形成了双电子势阱。第二个势阱将减少扩散到 InAlAs 缓冲层中的电子数量。因此,DC 通道结构在电子限制方面比 SC 和 CC 通道结构更有效。